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Abstract
Dust storms affect the primary productivity of the ocean by providing necessary micronutrients to the surface layer. One such dust
storm duringMarch 2012 led to a substantial reduction in visibility and enhancement in aerosol optical depth (AOD) up to ~ 0.8 (AOD
increased from 0.1 to 0.9) over the Arabian Sea. We explored the possible effects and mechanisms through which this particular dust
storm could impact the ocean’s primary productivity (phytoplankton concentration), using satellite-borne remote sensors and reanalysis
model data (2003–2016). The climatological analyses revealed anomalousMarch 2012 in terms of dust deposition and enhancement in
phytoplankton concentration in the month of March during 2003–2016 over this region. The studied dust storm accounts for increase
in the daily average surface dust deposition rate from ~ 3 to ~53 mgm−2 day−1, which is followed by a significant enhancement in the
chlorophyll-a (Chl_a) concentration (~ 2 to ~9 mg m−3). We show strong association between a dust storm and an event of anoma-
lously high biological production (with a 4-day forward lag) in the Arabian Sea. We suggest that the increase in biological production
results from the superposition of two complementary processes (deposition of atmospheric nutrients and deepening of the mixed layer
due to dust-induced sea surface temperature cooling) that enhance nutrient availability in the euphotic layer.

Keywords Phytoplankton bloom . Chlorophyll_a . Dust storm . Fe-fertilisation . Sea surface temperature . Arabian Sea

Introduction

Atmospheric dust is known to affect the Earth’s climate sys-
tem, directly through absorption and scattering of solar

radiation and indirectly via modification of cloud properties
(Twomey 1977; Albrecht 1989; Lohmann and Feichter 2005).
Moreover, these dust aerosols alter the primary productivity of
the oceans by deposition of iron (Fe) and other micronutrients
on ocean surface (Jickells et al. 2005; Han et al. 2011; Calil
et al. 2011) and have significant impact on ecological balance
of oceanic ecosystem (Patra et al. 2007). The depositions
from dust storms are more frequent and are mainly originating
from the desert regions like the Sahara, Middle East,
Southwest Asia, China, Mongolia, southwestern North
America, west coast of South America, and Australia. For
example, dust from East Asia and Sahara are known to reach
far beyond their sources of origin and get deposited over the
Pacific and the Atlantic Ocean and affect as far as North and
South America (Prospero et al. 1987; Goudie and Middleton
2001).

These atmospheric dust aerosols are responsible for sup-
plyingmicronutrients to open ocean regions (Fung et al. 2000;
Sarthou et al. 2003; Jickells et al. 2005; Gabric et al. 2002),
particularly the Fe to the marine ecosystems (Duce and
Tindale 1991; Sunda and Hunstsman 1997; Hutchins and
Bruland 1998). There are several important sources through
which nutrients are made available to phytoplankton such as
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vertical entrainment, upwelling, Ekman pumping, river dis-
charge, resuspension, and groundwater discharge (Gao et al.
2013; Tan et al. 2011; Vahtera et al. 2005). The growth of
phytoplankton is also noticed during heavy dust events due
to the readily available Fe content in dust (Wang et al. 2012).
Based on the observations during 1994–1998, Fan et al.
(2006) have estimated ~ 21 Tg/year of Fe deposition in the
global oceans due to dust storms. Vincent et al. (2016) have
shown that dry dust deposition contributes to almost 10–46%
of major dust deposition events over the Mediterranean Sea
based on specific sites observations. The global Fe-cycle in
terms of Dust-Ocean biogeochemistry-climate interactions is
well reviewed in Jickells et al. (2005).

The biogeochemistry of the Arabian Sea (AS), which con-
trols the biological production over the region has strong spa-
tial and seasonal variation (McCreary et al. 2009). It changes
from eutrophic conditions during monsoon seasons to oligo-
trophic conditions during inter-monsoon periods (McCreary
et al. 2009). The semi-annual monsoonal reversal makes it
one of the highly productive regions (Madhupratap et al.
1996; Tang et al. 2002; Barber et al. 2001; Gao et al.
2013), particularly along the Arabian Peninsula during sum-
mer season (Wiggert et al., 2005; Lévy et al., 2007) and north-
ern part of the AS during winter monsoon season
(PrasannaKumar et al. 2010; Naqvi et al. 2010). The biologi-
cal productivity in the AS is related to summer (July–
September) and winter (January/February/March) monsoonal
flow. During summer, high wind intensity triggers the natural
phenomenon (Barber et al. 2001) such as Ekman pumping,
lateral advection, eddies, and coastal upwelling, which play a
prominent role in supplying nutrients to euphotic zone (Banse
et al. 1996; Jayakumar et al. 2001; Naqvi et al. 2010). On the
other hand, vertical convective mixing due to significant sea
surface cooling drives the bloom dynamics during the winter
season (Lee et al. 2000; Prakash and Ramesh 2007).
Moreover, on an inter-annual scale, phytoplankton concentra-
tion variations during winter are strongly correlated to mixed
layer depth fluctuations and mainly controlled by the net heat
flux at the air-sea interface (Keerthi et al. 2017). There is lower
phytoplankton productivity in March as compared to
February, which is associated with the limited vertical mixing
in the oceanic layer duringMarch (i.e. away from the realm of
active winter convection) due to increased solar radiation-
induced layer stratification (Madhupratap et al. 1996).
February month is generally characterised with high phyto-
plankton concentration due to natural ocean dynamics (active
winter convection as mentioned above) and it is hard to de-
couple dust effect with ocean dynamics. Therefore, we have
focused on the month ofMarch to see the probable association
between dust storm and enhanced chlorophyll-a (Chl_a)
concentration.

Several studies have been carried out onmajor dust loading
events from African and Asian low-latitude deserts (Prospero

et al. 1987; Arimoto et al. 1990; Laurent et al. 2008;Uno et al.
2005) and deposition of dust in the northern and western AS
(Li and Ramanathan 2002; Zhu et al. 2007). However, there is
a lack of consensus about the impact of dust deposition on the
ocean bloom dynamics around the world. For example, Volpe
et al. (2009) have suggested the insignificant role of dust to
bloom activities over the Mediterranean Sea. On the other
hand, a significant positive correlation has been reported be-
tween Chl_a and dust deposition over the South yellow Sea
and East China Sea (Tan et al. 2011). The enhanced AOD
during dust storm has also been correlated with increased
Chl_a concentration with the lag of 1–4 days in the AS
(Singh et al. 2008). Recently, Banerjee and Kumar (2014)
have studied the relationship between atmospheric dust and
Chl_a concentrations during winter monsoon over the AS
using satellite data and modelling. They showed that the
inter-annual variability of phytoplankton concentration during
the late winter convection is mainly driven by episodic dust
storms. Kumar et al. (2010) have also reported annual en-
hancements of phytoplankton concentration associated with
dust-derived nutrient supply over the AS during 1997–2007.
They have reported the convection driven nutrient supply
coupled with increased dust delivery enhances the phyto-
plankton concentration during the winter season.

Dust storms usually occurred from April to June over the
AS (Middleton 1986; Pease et al. 1998; Le’on and Legrand
2003; Gautam et al. 2009). However, there are several dust
storm events that also occurred during the early months
(January–March) in different years (Prakash et al. 2015).
One of the prominent dust storms during March 2012 (i.e.
19–21, March) is characterised as a ‘super dust storm’ as its
effects reached as far as Southeast Asia and foothills of
Himalayas (Singh and Beegum 2013; Srivastava et al. 2014;
Alam et al. 2014). In the present study, we analysed long-term
(2003–2016) satellite and reanalysis datasets during March to
address the relationship between the bloom dynamics and dust
outbreaks over the AS region (15° N–25.5° N and 59° E–70°
E). Particularly, we are focused on a dust storm during
March 2012 and its association with increased phytoplankton
concentration over the AS. The mechanisms associated with
the impact of dust activities on primary productivity over AS
are also discussed in detail.

Data set and methodology

Moderate resolution imaging spectroradiometer
onboard Aqua

Chlorophyll a

Moderate resolution imaging spectroradiometer (MODIS) on-
board NASA Aqua and Terra satellites is widely used to
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retrieve several data products related to the Earth, Ocean and
atmosphere. MODIS is onboard a polar orbiting satellite,
passes the equator approximately at 10:30 am/pm local stan-
dard time (LST) for Terra and 01:30 am/pm LST for Aqua. In
the present study, MODIS-Aqua satellite-derived data is used
to study the oceanic parameters such as Chl_a and euphotic
depth. The daily oceanic parameters over the AS are obtained
from NASA ocean colour web (http://oceancolor.gsfc.nasa.
gov/) with the resolution of 4 km for 2003–2016. The
empirical-derived algorithm (OC3M) has been used to esti-
mate the Chl_a concentration (ChlMA, mgm−3) using different
band ratio of remote sensing reflectance (O’Reilly et al. 2000;
Johnson et al. 2013), which is given as follows:

ChlMA ¼ 10 0:2424−2:7423RMAþ1:8017R2
MAþ0:0015R3

MA−1:2280R
4
MAð Þ ð1Þ

where RMA = log10(Rrs(443/547) > Rrs(490/547)) and Rrs repre-
sents observed reflectance at particular wavelength from
Aqua MODIS sensor.

Euphotic depth

Euphotic depth represents the zone where phytoplankton pho-
tosynthesis takes place and is known as an important zone in
context of ecosystem dynamics (Shang et al. 2011; Platt and
Sathyendranath 1988). Euphotic depth is estimated from
Chl_a (Morel et al. 2007) as follows:

Euphotic depth ¼ 34* Chl að Þ−0:39 ð2Þ

The above approach estimated the euphotic depth within ~
33% of in situ observations (Lee et al. 2007). Details of algo-
rithm, associated uncertainties and validation can be found
elsewhere (Lee et al. 2005; Morel et al. 2007; Lee et al.
2010). We have used daily euphotic depth data over the AS
for March 2012 on a 4-km spatial resolution.

Aerosol optical depth

MODIS onboard Aqua satellite is also used to obtain the level
3 daily aerosol data product (MYD08_D3_6_Aerosol_Opti
cal_Depth_Land_Ocean_Mean) from giovanni.gsfc.nasa.
gov/ platform with the 10 × 10 resolution. In the present
work, AOD550 from collection 6 is used over the AS for the
period of 2003 to 2016. The uncertainty associated with
MODIS-AOD over land and ocean are ± (0.05 + 0.15*AOD)
and ± (0.03 + 0.05*AOD), respectively (Levy et al. 2010;
Remer et al. 2002).

Sea surface temperature

A new generation global sea surface temperature (SST) is
provided by the group of high resolution of sea surface

temperature with different levels such as level 2P, level 3,
and level 4. The level 4 data (derived from L2P products) is
generated from multiple satellite data sets using optimal inter-
polation, which provides gridded and gap-free products. The
daily data is obtained from the web platform of GHRSST
(http://www.ghrsst.org) with the resolution of 0.0110 × 0.
0110 for March 2003–2016.

Modern-Era Retrospective analysis for Research
and Applications-2

Modern-Era Retrospective analysis for Research and
Applications (MERRA-2) is a satellite constrained reanalysis
model developed by the Global Modelling and Assimilation
Office (GMAO) of NASA (Rienecker et al. 2011). GOCART
module is being used to simulate the different aerosols (dust,
black carbon, sulfate, sea salt and organic carbon) using
GEOS-5 model in the MERRA-2 reanalysis system
(Buchard et al. 2016). In the MERRA-2 simulations, aerosols
are treated as externallymixed particles and are represented by
five different layers to predict the mass-mixing ratio of parti-
cles in the five size bins, i.e. 0.1–1, 1–1.8, 1.8–3, 3–6 and 6–
10μm radius of particle (Bosilovich et al. 2016). In the present
study, total dust-dry deposition flux is calculated by the sum of
the deposition fluxes in the individual dust bins at spatial
resolution of 0.50 × 0.6250. The total dust-dry deposition flux
is then used to estimate the deposition of Fe in the AS. Fe
deposition is estimated as 3.5% of total dry deposition
(Mahowald et al. 2005; Gao et al. 2003) and that the bio-
available component only accounts for 0.4% of it (Srinivas
et al. 2011).

MERRA-2 derived hourly simulated clear sky radiation
data (e.g. shortwave radiative flux at surface) with and without
aerosols are used to estimate clear sky shortwave aerosols
direct radiative forcing at ocean surface (SRF) (Bali et al.
2017) during March 2003–2016. The wind vector at 850
and 1000 hPa and wind stress data are also obtained from
MERRA-2 during March 2012. We estimated the Ekman
mass transport following Smitha et al. (2014) by dividing
the meridional wind stress by coriolis parameter. Meridional
wind stress is estimated by the multiplication of meridional
wind air density and drag coefficient. Coriolis parameter is
obtained as 2 Ω sinΦ, whereΩ denotes the angular frequency
(radian/s) of the Earth and Φ represents the latitude.

ERA-interim

ERA-interim is a part of global atmospheric reanalysis data
product provided by European Centre for Medium-Range
Weather Forecasts (ECMWF). Twelve hourly 4D-Var data
assimilation methodology and T255 spectral model with the
60 vertical model levels are the core component of ERA-
interim (Lawrence et al. 2015). This dataset provides the four
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analyses per day on 00, 06, 12 and 18 UTC. Daily vertical
profiles of wind components (u and v) and specific humidity
data (1000–850 hPa) along with turbulent heat fluxes (latent
heat flux and sensible heat flux) at surface are obtained for
March 2012 at 0.125° × 0.125° horizontal resolution. Detail
information about ERA-interim data and its availability can
be found in Dee et al. (2011) and at ECMWF website (http://
apps.ecmwf.int/).

Correlation analysis

We have used 30 days data to calculate temporal Pearson’s
correlation coefficients between spatially averaged (over the
AS) daily estimated dust deposition anomaly and Chl_a con-
centration anomaly as a function of forward lag (in days)
duringMarch 2012. The daily anomalies were calculated with
respect to March 2012 mean. The spatial map of Pearson’s
correlation coefficients is also derived using collocated daily
estimated dust deposition anomaly and Chl_a concentration
anomaly over the AS. The spatial correlation map is not cre-
ated using 30 days data for all pixels because of unavailability
of continuous 30 days data from MODIS over several pixels.

Results

A dust storm is observed over the Middle East and southwest
Asia during March 2012 by Earth observatory NASA (Figs. 1
a and b). These figures show a plume of dust that stretches
across the AS from the coast of Oman to India. To quantify the
relative strength of the March 2012 dust storm with respect to
others years, we analysed the estimated dust deposition rate
over the AS during 2003–2016. Figure 1 c shows the yearly
variation of estimated dry dust deposition rate for March
month from 2003 to 2016 averaged over the AS (15° N–
25.5° N and 59° E–70° E). Figure 1 c clearly shows a maxi-
mum dust deposition rate inMarch 2012 (~ 13mgm−2 day−1).
Similarly, Fig. 1 d shows spatial distribution of dust deposition
anomaly over the AS for March 2012. We have analysed
anomalies of observed (2012) vs. 14 years mean data for the
month of March in this study. A substantial positive anomaly
of dust deposition rate (~ 6–12 mg m−2 day−1) during
March 2012 is observed, which is also established from the
monthly variation (Jan–Apr) of dry dust deposition rate from
2003 to 2016 over the AS (Fig. S1, supplementary material).

Figures 2 a and b show the spatial distribution of mean
Chl_a concentration over the AS for March during 2003–
2016 and 2012 anomaly, respectively. In general, the northern
part of AS shows high mean Chl_a concentration (Fig. 2 a),
but positive Chl_a anomalies (Fig. 2 b) are observed over the
central AS (18°–22° N and 60°–68° E) during March 2012.
Substantial large positive anomalies of Chl_a (~ 4–
12 mg m−3) accompanied with positive estimated dust

deposition rate anomalies (~ 6–12mgm−2 day−1) are observed
over the central AS (Fig. 2 b and Fig. 1 d). A negative Chl_a
anomaly can also be seen in the north of the basin relatively
closer to the coastal region and in the north of the positive
anomaly region. Due to sufficient availability of nutrient and
coastal upwelling (Naqvi et al. 2010), blooms near the coastal
region are common. However, the enhancement of Chl_a con-
centration in central region during March 2012 warrants com-
prehensive analysis.

Figure 3 shows that the AOD and the estimated dust depo-
sition both have similar trends and reach their maximum (~
0.8 and ~ 52 mg m−2 day−1, respectively) on the 20th of
March 2012 (Figs. 3 b and c). However, the highest peak of
Chl_a (~ 9.4 mg m−3) is observed on the 24th of March 2012,
after a lag of 4 days from the dust storm event. Similar in-
creased chlorophyll concentration after a lag of 1 to 4 days of
dust storm has also been reported earlier over the AS (Singh
et al. 2008; Banerjee and Kumar 2014). In order to know the
exact lag (days) between dust deposition and Chl_a concen-
tration, we have further used a lag correlation analysis to see
when we get the maximum correlation. Figure 4 a shows
Pearson’s correlation coefficients between spatially averaged
daily dust deposition anomaly and Chl_a concentration anom-
aly over the AS as a function of forward lag (in days) during
March 2012. The maximum correlation (~ 0.58 significant at
95% CI) between Chl_a and estimated dust deposition rate are
found at 4 days lag. Further, Fig. 4 b shows the spatial distri-
bution of correlation coefficients between Chl_a and dust de-
position rate (daily anomalies) at 4 days forward lag during
March 2012. It again shows high correlation coefficients (>
0.6) over the positive Chl_a anomalies region over the AS.

Figure 5 shows the time series of the daily mean (2003–
2016) and 2012 anomaly in (a) SSTand (b) shortwave surface
radiative forcing (SRF) during March averaged over the AS.
Results show a continuous increase in mean SSTas the month
progressed, which is related to the annual cycle of solar radi-
ation. Moreover, Fig. 5 a shows that the March 2012 is in
general associated with lower SST as compared to 14 years
mean. A sharp reduction in SST (~ 0.8 °C) is visible in a span
of 4 days during the 17th–21st of March 2012. The dip in
SST-anomaly is also consistent with a dip in SRF occurring
on the 20th of March. Moreover, the surface latent heat flux
(negative values indicate ocean to atmosphere heat transfer)
also shows maximum value on the 20th of March (Fig. 6 a),
which is also consistent with the dip in SST. A somewhat
similar, reduction in SST is also observed on the 12th of
March which may be associated with another relatively weak
dust outbreak with a nearly similar pattern of latent heat flux
with mild peak. However, the effect is not so prominent and
may be because of a different history where SST may be
decreasing since third to 12th of March.

The ocean surface latent heat flux is directly proportional to
the product of wind speed at a 10-m level (above water
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surface) and specific humidity difference between ocean sur-
face and at some specific height above the water surface
(Bradley et al. 1991; Zhang and McPhaden 1995). We have
taken 1000 and 850 hPa as two reference levels for calculation
of humidity difference in this study. Figure 6 b shows that this
product also has a maximum on the 20th of March. In general,
the high surface wind speed over ocean increases the turbulent
heat flux, which is manifested in Fig. 6 a. Therefore, the re-
duced SST could be understood as the combination of the
radiative effect of dust loaded atmosphere on incoming short-
wave solar radiation and sudden increase in latent heat flux
due to increased surface wind speed during dust outbreak
event. The role of direct radiative effect of dust and associated
latent heat fluxes changes on SST variability has been shown

in various studies over tropical Atlantic Ocean (Lau and Kim
2007; Foltz and McPhaden 2008; Evan et al. 2011). The mean
ocean mixed layer depth is < 30 m over the AS during the
month of March (Fig. 5 in de Boyer Montégut et al. 2004).
Therefore, over such a shallow mixed layer depth region, SST
decrease may facilitate nutrient upwelling by driving convec-
tion processes (due to density differences between surface and
subsurface ocean water) that lead to the injection of nutrients
up into the surface waters (Madhupratap et al. 1996;Hofmann
et al. 2011; Poll et al. 2013), which may favour growth of
phytoplankton. Euphotic depth anomaly time series is also
consistent with the SST result (supplementary Fig. S3).

Chl_a enhancement is linked to several other factors such
as coastal upwelling, wind stress, and Ekman mass transport.
To quantify the impact of Ekman mass transport on phyto-
plankton concentration in the central AS, we analysed spatial
and temporal variation of Ekman mass transport (kg/m/s)
anomaly and dry dust deposition rate (mgm−2 day−1) anomaly
(Fig. 7) during the dust event (19th–21st of March). Ekman
mass transport < − 2000 kg/m/s is considered as a strong
Ekman mass transport, which results in strong upwelling
and nutrient transport to the Sea (Smitha et al. 2014). The
strong Ekman mass transport (< − 2000 kg/m/s) during dust
storm (20th of March 2012) has been observed from northern
coastal AS region to the central AS. Moreover, the northern
coastal region of the AS also received maximum dust deposi-
tion ~ 90–100 (mg m−2 day−1). Therefore, Ekman mass trans-
port may also be responsible for the transport of dust-abundant
and nutrient rich coastal water to the central AS region. This
process is possibly responsible for a deficient Chl_a and a
negative anomaly in the northern region of the basin (Fig. 2 b).

Fig. 2 a Left panel shows the mean (2003–2016) spatial variability of
satellite derived Chl_a (mgm−3, plotted as logarithmic of actual values, in
colour bar) of March month over the Arabian Sea and b right panel
represents the spatial distribution of Chl_a anomaly for the March 2012
as compared to 14 years (2003–2016) March mean. The anomaly is the
difference of Chl_a concentration of March, 2012 and that of
climatological mean for 2003–2016 (for March month only)

Fig. 1 MODIS (Aqua) images
showing a heavy dust plume
covering the Gulf, Iraq, Iran,
Pakistan and India on the 19th of
March 2012 and b dust plume
reaching over Arabian Sea on the
20th of March 2012. c Yearly
(March month only) variation of
estimated dry dust deposition
averaged over the Arabian Sea
(15° N–25.5° N and 59° E–70° E)
during 14 consecutive years
(2003–2016) and d spatial
distribution of estimated dust
deposition anomaly for
March 2012 with respect to
14 years (2003–2016) mean of
March month
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Discussions and summary

The AS is considered as an important sink region for the dust
originated from the Middle East and southwest Asia during the
dust storm events. The dust aerosols originating from these

regions have high Fe content which reaches > 2 μg/m3 during
dusty conditions (Najafi et al. 2014; Alghamdi et al. 2015).
Wang et al. (2012) shows large Fe concentration (> 0.5 μg/
m3) over the AS due to the outflow of dust from Arabian, Lut
and Thar deserts. TheAS (especially western and northern part)

Fig. 3 Daily time series of year 2012 and 14 years (2003–2016) mean of
a Chl_a (mg m−3), b estimated dust deposition rate (mg m−2 day−1) and c
AOD during March month averaged over the Arabian Sea (150° N–

25.50° N and 590° E–700° E). Black and blue colours represent mean
and individual values, respectively
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Fig. 4 a Pearson’s correlation coefficients between averaged Chl_a and
averaged estimated dust deposition rates daily anomalies over the
Arabian Sea (15° N–25.5° N and 59° E–70° E) as a function of forward
lag (days) during March 2012. The correlation coefficient at 4 days lag is
significant at 95% confidence interval (CI), whereas others are

insignificant (i.e. p > 0.05). b Spatial distribution of correlation coefficient
between Chl_a and dust deposition rates daily anomalies at 4 days for-
ward lag duringMarch 2012. Fig. S2 shows region where correlations are
significant at 95%CI. The daily anomalies were calculatedwith respect to
March 2012 mean
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experiences maximum atmospheric dust deposition (Prospero
et al. 2002; Zhu et al. 2007) and is found to be one of the most
productive regions of the ocean (Barber et al. 2001). High
nutrients content has also been reported in this region (Singh
et al. 2008; Naqvi et al. 2010). Dust is also a potential source of
other essential nutrients such as nitrogen and phosphorous
(Prakash et al. 2016; Ramaswamy et al. 2017) which are im-
portant for marine life. The compounds of Fe, nitrogen and
phosphorus were identified in dust samples from the Arabian
Peninsula (Prakash et al. 2016).Mainly, themixing of dust with
anthropogenic pollution during transport process brings N and
P content in the dust. Ramaswamy et al. (2017) have shown a
significant amount of ions of N and P in rainwater samples
along the west coast of India. Therefore, the dust storm plays
an important role in providing the essential nutrients to the AS.

The significant association between the phytoplankton bloom
and the aerosol optical depth has been established in the AS
(Banerjee and Kumar 2014) like several other regions of the
ocean (Gabric et al. 2002; Calil et al. 2011; Han et al. 2011;
Gallisai et al. 2014). It may be argued that the atmospheric dust
deposition can be the prime source of dissolved Fe in the open
ocean, but in the continental margins, it is the sedimentary
sources that dominate (Moore and Braucher 2008). However,
the Fe rich dust aerosols from the west and southwest Asia can
certainly provide essential micronutrients in the dissolved
ocean water of the AS to boost the phytoplankton productivity
in the region (Singh et al. 2008). Several studies have shown
the role of dissolution of Fe in ocean waters due to the dust
transportation (Hand et al. 2004; Buck et al. 2006; Journet et al.
2008; Baker and Croot 2010; Takahashi et al. 2011; Han et al.

Fig. 5 Daily time series of anomaly and 14 years (2003–2016) mean of a
sea surface temperature (SST, °C) and b shortwave surface radiative
forcing (SRF, W/m2) during March month averaged over the AS (15°

N–25.5° N and 59° E–70° E). Blue and black colours represent the
anomaly and mean values, respectively

Fig. 6 Daily time series of latent
heat flux (LHF) (upper panel) and
product of wind speed at 10 m
above ocean surface (U10) and
specific humidity difference at
1000 and 850 hPa (q1000 – q850)
during March month averaged
over the AS (15° N–25.5° N and
59° E–70° E)
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2011; Conway and John 2014). However, a recent study by
Banerjee and Kumar (2014) has found only 8 (out of 45) dust
storms followed by enhanced phytoplankton concentration
over the AS during winter monsoon of 2002–2011. This find-
ing imposes an interesting question about the non-association
of other dust storms with phytoplankton bloom over the AS,
which need to be addressed.

The daily average dry dust deposition rate plotted for the
entire month of March 2012 in Fig. 3 shows that the daily
estimated dust deposition increased drastically from ~
2.5 mg m−2 day−1 on 18th of March to ~ 52 mg m−2 day−1

on the 20th ofMarch due to the dust stormwhich settled down
to normal level only on 22nd of March (~ 8.6 mg m−2 day−1).
A similar scenario is also observed during the 10th–14th of
March, when daily estimated dust deposition varying between
~ 7–22 mg m−2 day−1 with peak concentration on 12th of
March. Such a rapid increase in dust deposition was also ob-
served by Han et al. (2011) during the Asian dust storm of
April 2001 in the North Pacific Ocean. The estimated Fe de-
position rate (BModern-Era Retrospective analysis for
Research and Applications-2^) is found 1.85 mg m−2 day−1

on the 20th of March. It amounts to about 4.41 μg m−2 day−1

of soluble aeolian Fe in the surface layer of the AS which is
equivalent to about 133 nM of Fe. Such a high Fe concentra-
tion with other available nutrients such as N and P (not quan-
tified in this paper) in the AS could trigger the rapid increase in
chlorophyll concentration. Wells (2003) has shown that even
2 nM increase in Fe concentration can stimulate phytoplank-
ton blooms. This can be noticed from our results which show
that the Chl_a concentration increased more than four times
from the 20th to 24th of March 2012.

In addition to bio-available nutrient supply, the dust
storm of March 2012 is also associated with a decrease
of about 0.8 °C in the SST over the AS. A similar type of
decrease in SST of ~ 0.3 °C is also associated with the
12th of March dust storm. The decrease in SST could
destabilise stratified layers in the ocean and may enhance
the vertical mixing which could supply micronutrients
from the deeper ocean to euphotic zone (Hofmann et al.
2011). Poll et al. (2013) shows an inverse relationship
between SST and primary productivity over the Atlantic
Ocean and found that a 0.5 °C change in SST would
cause the 11% change in daily primary productivity in
upper 50 m.

Fig. 7 Spatial and temporal variation Ekman mass transport (kg/m/s)
anomaly and dry dust deposition rate (mg m−2 day−1) anomaly during
super dust event (19th–21st of March 2012). Both, Ekman mass transport

and dust deposition rate are prominent on all 3 days with maximumon the
20th of March. Anomaly is calculated as daily values minus March 2012
mean
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From all the results and discussion presented above, we can
summarise that the dust storm of March 2012 was associated
with different driving mechanisms for enhanced phytoplankton
concentration in the central AS. This particular dust storm pro-
vides favourable conditions for phytoplankton bloom, i.e. mi-
cronutrient availability by dust deposition and nutrient upwell-
ing by SSTcooling. Thesemechanisms are associated with dust
outbreaks that modulate the ocean productivity through chem-
ical and physical changes. It is possible that every dust storm
occurring in this region could not bring all the above-mentioned
changes that are responsible for chlorophyll enhancement dur-
ing weak winter convection conditions. This could explain why
not all the dust storms are followed with phytoplankton bloom
over the AS (Banerjee and Kumar 2014). The episodic nature
of atmospheric deposition (which may provide essential nutri-
ents) needs to be considered in ocean biogeochemistry models
for better understanding of ocean productivity processes (Guieu
et al. 2014). In summary, we have shown an association be-
tween a dust storm and an event of anomalous biological pro-
duction in the AS. We suggest that the enhanced biological
production results from the superposition of two main comple-
mentary processes, i.e. deposition of atmospheric nutrients at
the surface water and enhancement of nutrient availability at the
surface water due to dust-induced SST cooling that reduces
water column stratification. However, long term in situ and
satellite observations coupled with better ocean models are re-
quired to establish the comprehensive relationship between
dust deposition and Chl_a concentration over AS region.
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