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ABSTRACT
Marine stratocumulus (MSC) are shallowmarine boundary layer clouds
that have a significant cooling contribution to the Earth’s radiative
balance. The amplitude of this cooling effect strongly depends on
the properties of closed and open cells comprising MSC cloud fields.
Systematic study of theunderlyingprocesses associatedwith cloud cell
properties requires accurate and reliable cell characterization. Here we
propose a method for cell segmentation of MSC clouds as observed
from geostationary satellite images. The method, which is based on
watershed transformation, is found to be highly efficient in segmenta-
tion of both open and closedMSC scenes. Application of the suggested
methodology over a Lagrangian framework that track the clouds as
they are advected by the wind and comparison of the results between
pairs of consecutive images indicate that the resulted segmentation is
robust and consistent. Themethodology developed in this work opens
the way to systematic investigation of spatiotemporal changes in MSC
cloud field properties, which will improve our understanding of MSC
clouds and their role in regulating Earth’s radiative budget.
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1. Introduction

Accounting for more than half of Earth’s albedo (Trenberth, Fasullo, and Kiehl 2009),
clouds play a major role in the climate system. Yet, because of their dynamic and
microphysical complexity, they are the least understood climate parameter (Forster
et al. 2007). Of special importance are marine stratocumulus (MSC) clouds, which form
large decks that cover millions of square kilometres over the subtropical and mid-
latitude oceans (Figure 1a) (Feingold et al. 2010; Wood 2012; Koren and Feingold
2013; Goren and Rosenfeld 2014). By increasing Earth’s shortwave albedo (as opposed
to the dark oceans below the clouds), while radiating in the long wave at approximately
the same temperature as the surface, these shallow marine boundary layer clouds have a
significant cooling contribution to Earth’s radiative balance (Hartmann and Doelling
1991). The net radiative forcing of MSC clouds is controlled by microphysical and
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morphological properties (Muhlbauer, McCoy, and Wood 2014), which depend on
different environmental factors, such as aerosols concentrations (Rosenfeld, Kaufman,
and Koren 2006; Bar-Or, Gildor, and Erlick 2011; Lehahn et al. 2011; Goren and Rosenfeld
2012) and meteorological conditions (Kazil et al. 2014).

MSC clouds were shown to form a classical bifurcated system with two dynamical states:
open and closed cells (Stevens et al. 2005; Rosenfeld, Kaufman, and Koren 2006; Feingold et al.
2010; Koren and Feingold 2011; Wood 2012). The two states are clearly observed in satellite
images of MSC cloud fields (Figure 1b and c). In general, closed cell clouds formwhen air rises
at the middle of the cell and sinks along the walls resulting in continuous, highly covered and
therefore highly reflective cloud fields (Figure 1b). The opposite accounts for open cells; where
the clouds form along the cell’s walls, resulting in much lower coverage and reflectivity
(Figure 1c). Closed cells were shown to have preference to cold water and shallow marine
atmospheric boundary layer (MBL) conditions that can be found near the coasts of eastern
subtropical oceans. As the water warms and the MBL thickens with distance from the coast-
line, a transition to larger closed cells followed by a formation of open cells and later trade
cumulus clouds takes place (Wood and Hartmann 2006; Muhlbauer, McCoy, andWood 2014).

As the cloud field’s albedo strongly depends on the cloud cell properties, there is a great
need to understand how these properties change in response to variations in the environ-
mental conditions. A major source of data comes from geostationary satellites that provide

Figure 1. Satellite images of marine stratocumulus (MSC) clouds over the south-eastern Pacific
Ocean from NOAA satellite GOES-13. (a) MSC cloud field from 4 August 2011. Note the co-existence
of closed cells (fully covered with high albedo cloud field; e.g. region outlined by blue rectangle) and
open cells (low cloud cover with low albedo cloud fields; e.g. region outlined by red rectangle)
regions. (b, c) Magnification of the regions of interest (ROIs) outlined by the blue and red rectangles,
respectively. The morphological characteristics of the two ROIs are investigated throughout the text.
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long-term information on cloudmorphological andmicrophysical properties (Minnis, Smith,
and Young 2001). Systematic application of these data for studying the underlying pro-
cesses associated with cloud cell properties requires accurate and reliable cell characteriza-
tion. Here we aim at the first andmost critical stage of this important mission, and suggest a
method for cell segmentation in MSC as observed in satellite images.

Our study follows previous attempts to develop numerical techniques for systematic
characterization of cell patterns in MSC. Gryschka, Witha, and Etling (2008) used a
pattern recognition algorithm that is based on delineation of ellipses around MSC
clouds. The resulting cloud’s equivalent radius distribution was fitted as a power law
both in satellite and model data. This method was applied only to cases of closed cell
MSC fields. In addition, the inherent limitation to cover a two-dimensional space with
ellipses reduces the efficiency of the methods in cases of very dense fields of closed cell
MSC, which are polygonal in nature. Wood and Hartmann (2006) used frequency analysis
of satellite-derived liquid water path to characterize MSC field properties, namely cloud
size, cell size and convection type. While providing useful information on the properties
of the cloud field as a whole, the method does not provide any information on the
spatial characteristic of individual cells. Recently, it was shown that studying the time
evolution of individual cells is an important stage towards understanding the processes
that control MSC in general and in particular setups and transitions between states
(Feingold et al. 2010; Koren and Feingold 2011, 2013).

Cloud cell segmentation is not a well-defined problem because different applications
may require different segmentation types. Specifically since clouds tend to have a fractal
nature (Cahalan et al. 1994; Yamaguchi and Feingold 2013) a cell of large scale (in the
order of tens of kilometres) may consist of finer-scale structures. This problem is more
profound in the case of closed cells, where each main (large scale) cell can be sub-
divided to many smaller convective units.

Here we report on a segmentation method developed for MSC cloud cells that is tuned
to be sensitive to the large-scale cells and as importantly is tuned to be robust and
consistent. To do so we developed a watershed-based morphological transformation
(WMT), which is based on interpretation of a grey scale image as a topographic surface,
with the grey scale levels corresponding to topographic height (Beucher and Lantuéjoul
1979). Accordingly, the segmentation is performed by identifying watershed regions.
WMT was previously applied for characterizing spatial properties of clouds. González
et al. (2012) used segmentation based on WMT as a first step in an automatic technique
for cloud detection and classification. Lakshmanan, Hondl, and Rabin (2009) used WMT for
identifying storms in satellite and radar images. In addition, segmentation by WMT is
commonly used for many other applications, including biology (Karvelis, Likas, and
Fotiadis 2010), medical imagery (Grau et al. 2004), face recognition (Brethes et al. 2004),
remote sensing interpretation (Li et al. 2010) and geophysics (Roueff et al. 2004).

2. Satellite data

Images of MSC clouds fields are derived from band 1 (visual range, 550–750 nm) of the
Geostationary Operational Environmental Satellite (GOES-13, http://goes.gsfc.nasa.gov/)
IMAGER radiometer owned and operated by the National Oceanic and Atmospheric
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Administration (NOAA). The spatial resolution is 1 km in nadir, with one image acquired
every 30 minutes during daytime.

In this study we used the dataset for an area located between 80–110° W and 0–18° S,
which is part of the ‘Northern Hemisphere Extended’ GOES-EAST Imager Scan Sectors in
Routine Mode (http://www.nsof.class.noaa.gov/release/data_available/goes/index.htm).
This region covers the largest and most persistent subtropical MSC deck, over the
south-eastern Pacific Ocean (Klein and Hartmann 1993). The data are downloaded
from the Comprehensive Large Array-data Stewardship System (CLASS) (http://www.
class.ngdc.noaa.gov/saa/products/catSearch). The segmentation was performed over
300 km × 300 km scenes that were manually chosen based on cloud morphology.

3. Step-by-step image segmentation

As introduced in Section 1, the segmentation of open and closed MSC cells is performed
by applying the WMT, where the segmentation is associated with ridges of local grey-
scale maxima. This approach is ideal for delineating boundaries of open cells, in which
narrow regions of high grey-scale levels (i.e. the clouds at the cell edges) form n-torus
with distinct regions of low grey-scale level at their centre (i.e. the ocean below,
Figure 1c – open cells) (Koren and Feingold 2013).

In the case of closed cell MSC, where local grey-scale maxima are found at the n-torus
centres (Figure 1b), the normalized cell image I is first transformed to its negative image:

I1 x; yð Þ ¼ I x; yð Þ for open cells
1� I x; yð Þ for closed cells

�
(1)

where x and y are the coordinates and I1(x,y) is image after the transformation in case of
closed cells and identical to I for open cells.

After this stage closed cells border pixels have greater values than inner cell pixels,
and the resultant images have, in principle, similar characteristics as open cell images.
Following that, unless stated otherwise, the segmentation algorithm is similar for both
open and closed cells, and consists of three major steps (Figure 2a): (i) histogram
equalization and low pass filtering; (ii) morphological transformation preprocessing;
and (iii) WMT. The three steps are demonstrated for the closed and open cell scenes
outlined in Figure 1 (Figure 2b–e, lower and upper panels, respectively).

3.1. Histogram equalization and low pass filtering

This stage is meant to focus on the dynamical range which contains most of the
information relevant to our study. The resulting images are shown in Figure 2c.
Modification of the image contrast is done using adaptive histogram equalizing and
mapping the brightness distributions to a fixed one (in our case Rayleigh distribution).
Based on examination of a large number (>~500) of satellite images, we learned that the
typical borders of closed cells are characterized by normalized reflectance levels of
between 0.00 and 0.20, whereas the core of the closed cells is always larger than 0.72.
Therefore the values in the ranges 0.00–0.20 and 0.72–1.00 were truncated to 0 and 1,
respectively. In the case of open cells, which are characterized by much stronger

1058 A. GUFAN ET AL.

D
ow

nl
oa

de
d 

by
 [

W
ei

zm
an

n 
In

st
itu

te
 o

f 
Sc

ie
nc

e]
 a

t 0
6:

11
 2

1 
Fe

br
ua

ry
 2

01
6 

http://www.nsof.class.noaa.gov/release/data_available/goes/index.htm
http://www.class.ngdc.noaa.gov/saa/products/catSearch
http://www.class.ngdc.noaa.gov/saa/products/catSearch


contrast, histogram equalizing is redundant and is not performed. Following the adap-
tive histogram equalizing, we filter high-frequency noise using a Gaussian low pass filter
(diameter equals 30 km and standard deviation equals 0.5). This step is applied on both
open and closed cell images.

3.2. Morphological transformation preprocessing

A common problem in applying WMT is over-segmentation (Beucher and Meyer 1992;
Beucher 1994; Ng et al. 2006), which in our case would result in a very large number of
small cells. In order to avoid this problem while preserving significant structural ele-
ments, we perform mathematical morphological transformations (Haralick, Sternberg,
and Zhuang 1987; Maragos and Schafer 1987a, 1987b) that smooth the image and
remove irrelevant local extreme points (Figure 2d). The transformation consists of
morphological closing (i.e. image dilation followed by image erosion) and morphological
opening (i.e. image erosion followed by image dilation) operators that are applied
sequentially with the same structuring element.

The main parameter of these transformations is the structuring element. To estimate
the optimal structure element diameter we used a set of training images that were

Figure 2. Steps of the segmentation algorithm. (a) A scheme describing different steps of the
algorithm. (b–e) Step-by-step segmentation of closed (lower panels) and open (upper panels) MSC
cloud cells, as follows: (b) original satellite images; (c) image after filtering and histogram equalizing;
(d) image after morphological transformation; and (e) resulting segmentation (purple lines) super-
imposed on the original image. The process is applied on the two regions of interest outlined in
Figure 1.
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segmented manually by us and by our algorithm, and compared number of detected
cells. We tested structure element diameters of between3 and 17 km. In agreement with
the reported MSC cell characteristic scale of 10 km or more (Feingold et al. 2010; Koren
and Feingold 2013) the acceptable results were achieved using structuring elements in
the diameter range of 5–9 km. Application of smaller structuring elements resulted in
over segmentation, while application of bigger structuring elements missed important
cloud structures. For consistency the structuring element is defined here to be a disc
with a diameter of 7 km, reducing the likelihood for contribution of small structures that
are on the limit of the satellite resolution.

3.3. Watershed transformation

The final stage in the cell segmentation process is the watershed transformation (WST),
which is a morphological method for image segmentation (Beucher and Lantuéjoul
1979) (Figure 2e). Intuitively it can be described as attributing the reflectance (or grey-
level values) of each pixel to the pixels elevation. So any 2D image is interpreted as a 3D
surface P, with the grey-level values scaled as the vertical coordinate:

P ¼ fðx;y;I1ðx;yÞÞg (2)

where x and y are the coordinates and I1(x,y) is the grey level of the input satellite
image (after the above processing stages). Taking a topographic surface as a refer-
ence, segmentation borders are defined as the surface’s watershed lines (Lin et al.
2006).

4. Sequence segmentation in a Lagrangian framework

Next, we evaluate the robustness of our WMT method, namely its ability to provide
consistent segmentation of closed and open cellular cloud patterns. This is done by
comparing segmentation results from a sequence of consecutive images of the same
cloud field. The approach is based on the assumption that the characteristic lifetime of a
cloud cell is much longer than the 30 minutes time differences between two consecutive
satellite images (Koren and Feingold 2013). Therefore the cloud field maintains most of
its morphological features and the WMT should result in similar segmentation patterns
when applied on consecutive cloud field images.

Analysis of the method’s robustness by comparing the WMT results for sequences of
images requires very accurate tracking of the segmented region as it is advected by the
wind. For that we apply the Lagrangian tracking methodology recently developed by
Koren and Feingold (2013). The method for finding the displacement that yields the best
similarities between two consecutive cloud field images is based on minimizing the
absolute Euclidean distance (L2), between a matrix defined as the steepness matrix (S),
which is composed of the Euclidean sum of the gradients along the x and the y
coordinates:

St x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@I1t x; yð Þ

@x

� �2

þ @I x; yð Þ1t
@y

� �2
s

(3)
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where I1t is the satellite-processed image at a time t, and St x; yð Þ is the steepness matrix
element at time t and x, y coordinates.

Next, the optimal displacement ao; boð Þ is found by minimizing the Euclidean dis-
tance between each pair of consecutive steepness matrix as following:

ao; boð Þ ¼ argmin k St x; yð Þ; Stþ1 x � aΔx; y � bΔyð Þk2f g (4)

where a and b are the displacements and Δx and Δy are the pixel resolution along the x
and y axes, respectively.

To save calculation time the displacement was restricted to be smaller than 30 km.
Distance of 30 km in a 30 minutes time interval corresponds to an advection speed of
more than 16 m s–1, which marks the very high end of surface winds in MSC regions. As
in Koren and Feingold (2013) this tracking method shows single, well-defined results for
all examined cases.

Figures 3 and 4 show the evolution in time of the two scenes discussed earlier (from 4
August 2011 over the south-eastern Pacific Ocean; Figures 1 and 2). During a 4.5 hours
period (12:45–17:15), in both closed (Figure 3) and open (Figure 4) cell scenes, the
sequence images are relatively similar. On longer time scales the two cellular structure
types differ. While closed cells maintain distinct coherent structures that can, in some
cases, be tracked for a few hours (Koren and Feingold 2013 – see, e.g. cell segmented by
yellow contour in Figure 3), open cells have a shorter lifetime (order of 2 hours) and tend
to oscillate between cloud to cloud-free states (Feingold et al. 2010) and therefore the
image similarity degraded significantly for time differences larger than the characteristic
cell timescale.

4.1. Quantitative comparison of cellular cloud segmentation

Quantification of the differences in cellular segmentation in different images is based on
calculation of Rand index (RI, Rand 1971). This index follows the notion that two pixels of
a segmented image (with zero-width borders) can be found in one of two topological
conditions: part of one segment or between two different segments. Accordingly, RI
values are defined as the proportion of possible pixel pairs that are in equivalent
topological condition in both segmentations. RI between identical segmentations equals
1, and the RI is 0 when first segmentation results in only one segment while the number
of segments in the second segmentation equals to the number of pixels in the original
image. Formally, RI is defined as follows:

RI ¼ aþ c
aþ bþ cþ d

¼ aþ c

n
2

� � (5)

where n is the total number of pixels in the image; a, the number of pixel pairs that are
in the same segment in both segmentation; b, the number of pixel pairs that are in the
same segment in the first segmentation and in different segments in the second
segmentation; c, the number of pixel pairs that are in different segments in both
segmentations; and d, the number of pixel pairs that are in different segments in the
first segmentation and are in the same segment in second segmentation, and
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Figure 3. Segmentation of the closed cells region of interest (blue rectangle in Figure 1) as it evolves
during the day (4 August 2011). Yellow contour highlights one of the cells that was tracked
throughout the 4.5 hours analysis.
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Figure 4. As Figure 3 but for the open cells region of interest. Area enclosed by the red rectangle in
Figure 1.
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n
2

� �
¼ n n� 1ð Þ

2
is the total number of possible pairs: (6)

A problem with the RI is that the expected value for two random clusters is not zero. We
therefor adopt the adjusted Rand index (ARI, Hubert and Arabie 1985), to avoid or
bypass the problem. Application of this comparison method requires associating each
pixel in the image to a specific segment (in our watershed segmentation the lines are
not considered part of segments). Thus, before calculating the ARI parameter, we resize
the segmentation results and delete the borders by a nearest-neighbour interpolation
(Parker, Kenyon, and Troxel 1983).

The RI method is most commonly used for comparison between different clustering
methods as applied on a single image (Rand 1971; Arbelaez et al. 2011). In contrast, here
we use ARI calculation to estimate the consistency of a single segmentation method
when applied over a series of images describing a time-varying cloud field that is
tracked in a Lagrangian manner. When calculated for a series of sequential images
(with 30 minutes time difference), the ARI maintains relatively high values of between
0.83 and 0.94, and between 0.77 and 0.87 for closed and open cell scenes, respectively
(black thick line in Figure 5a and b). This is in agreement with the relatively small
changes in cloud patterns and associated segmentation revealed in qualitative compar-
ison between the images in the images (Figures 3 and 4).

To test the robustness of the segmentation methodology, and its applicability for
systematic study of MSC cloud fields, we perform a similar analysis (i.e. calculation of ARI
for segmentation of sequential images) for 10 scenes of closed and open cells MSC cloud
over the same region. We chose scenes that are (1) distinctly characterized as either
closed or open; and (2) tracked over a period of a few hours (in order to allow long-term
comparison using ARI). Overall, for all closed and open cellular cloud scenes the WMT
method provides consistent segmentation. This is emphasized by ARI, which maintains
relatively high values for evolving fields of closed (between 0.71 and 0.94, Figure 5a) and
open (between 0.74 and 0.94, Figure 5b) cloud cells.

5. Discussion

We use WMT to segment open and closed cells in fields of MSC clouds. Application of the
WMT over a Lagrangian framework that tracks the clouds as they are advected by the wind,
and comparison of the results between pairs of images taken at short time intervals, indicate
that themethod provides a robust and consistent segmentation of open and closed cells MSC
clouds.

A major advancement in applying the watershed methods for segmentation of MSC
cell patterns, which are very heterogeneous in shape and size (see, e.g. Figure 1), is the
adaptive form of the resulting segments. Importantly, this allows capturing the compact
area coverage by the cells, which is characteristic to both open and closed cell patterns.
This is not possible in various popular shape-based pattern recognition methods as the
ellipse recognition (Mai et al. 2008), which is constrained to a limited range of spatial
segmentation forms. However, while being highly efficient in segmenting cellular pat-
terns in MSC clouds, currently the methodology developed in this work is tuned to
scenes with well-defined cell state (closed or open).
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The ability of the WMTmethodology to provide consistent and robust segmentation of
MSC cellular cloud patterns is further emphasized by the high values of ARI between pairs
of sequential closed and open cell scenes (Figure 5). In addition, the relatively high ARI
values support the underlying assumption that for a limited period of 30minutes (the time
interval between two consecutive images), the MSC field is likely to conserve its cellular
structure. In addition, our analysis reveals distinct differences between closed and open
cell patterns. For example, while open cells have a relatively short lifetime, closed cells are
relatively stable and, in some cases, can be tracked over periods of several hours.

By allowing accurate segmentation of cellular cloud patterns, application of the WMT
methodology opens the way for systematic investigation of spatiotemporal changes in
MSC cloud field properties, and of their dependency on various environmental factors.
This will have important contribution to our understanding of MSC clouds and of their
role in regulating Earth’s radiative budget.

Figure 5. Evaluation of the method consistency. Values of adjusted Rand index (ARI) between
sequential images of time-evolving (a) closed cells and (b) open cells scenes from different days.
Black solid lines represent the ARI values for the closed and open cell scenes discussed in the text
(Figure 3 and 4, respectively).
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