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Effect of coarse marine aerosols on stratocumulus clouds
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[1] In contrast to fine anthropogenic aerosols (radii
~<0.5 pm), large aerosol particles are thought to enhance
cloud droplet growth, promote precipitation formation and
reduce cloud albedo. While shown in cloud simulation
models, the impact of coarse aerosols on marine stratocu-
mulus clouds lacks observational evidence. Here, by com-
bining data from AMSR-E and MODIS, both aboard
NASA’s satellite Aqua, we link the amount of coarse marine
aerosols emitted to the atmosphere through wind-driven
processes with the size of cloud droplets, at the world’s
largest deck of marine stratocumulus clouds over the south-
eastern Pacific. For constrained meteorological conditions,
approximately 1/2 of the change in droplet effective radius
(refp) 1s attributed to increase in coarse marine aerosol optical
depth (7.,), as surface winds intensify. Accordingly, a two-
fold increase in 7., is associated with a 1.4 ym +/—0.11
increase in reg. Our results suggest that climatic changes in
surface winds may play an important role not only over land
for wind-power estimation but also over the oceans by
changing clouds reflectance and lifetime. Citation: Lehahn, Y.,
1. Koren, O. Altaratz, and A. B. Kostinski (2011), Effect of coarse
marine aerosols on stratocumulus clouds, Geophys. Res. Lett., 38,
L20804, doi:10.1029/2011GL048504.

1. Introduction

[2] Forming large decks over the eastern part of subtropical
oceans, marine stratocumulus clouds (Figure 1a) are impor-
tant constituents of the climate system. By increasing the
earth’s shortwave albedo compared with the underlying
ocean, while radiating in the longwave at approximately the
same temperature as the surface, these shallow marine
boundary clouds have a significant cooling contribution to
the Earth’s radiative balance [ Hartmann and Doelling, 1991].
Marine stratocumulus clouds have two stable formations:
open and closed cells [Krueger and Fritz, 1961]. The
dynamics of the two formations and the roles of precipitation
and aerosols in these processes are subject to extensive
observational and modeling research [e.g., Wood et al., 2008;
Feingold et al., 2010].

[3] The radiative impact of marine stratocumulus is sus-
ceptible to perturbations by maritime and terrestrial acrosols
that modulate cloud microphysical and optical properties.
The outcome of different cloud-aerosol interactions strongly
depends on the size of aerosol particles involved in the pro-
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cess [Dusek et al., 2006]. When focusing on the optical
effects, increase in fine aerosol loading, usually from
anthropogenic sources, results in more numerous and smaller
droplets competing for the same amount of available water
vapor. When other factors being held constant, this enhances
the cloud reflectivity (the first aerosol indirect effect)
[Twomey, 1974] and, by reducing the warm rain formation
efficiency, increases the cloud lifetime (the second aerosols
indirect effect) [Albrecht, 1989]. The impact of increased fine
aerosol concentration on cloud droplets size have been
explored using both regional and global satellite datasets
[e.g., Breon et al., 2002; Kaufman et al., 2005].

[4] In contrast to the indirect cooling effect by small
anthropogenic aerosols, it was suggested that large aerosol
particles, acting as giant cloud condensation nuclei (GCCN),
may exert an opposite effect of reducing cloud albedo by
enhancement of cloud droplet growth and promotion of
precipitation formation through more efficient collision
coalescence process [Johnson, 1982; Feingold et al., 1999;
Rosenfeld et al., 2002; Posselt and Lohmann, 2008]. There
are various definitions in the literature for GCCN. In this
work we will refer to coarse marine aerosols (CMA, radii
>0.5 pm) that are emitted from the surface of the ocean
through wind driven processes. The population of wind-
induced CMA in the marine boundary layer is dominated by
soluble sea salt particles whose size distribution, concentra-
tion and optical properties strongly depend on surface wind
speed (W), with stronger winds promoting more emission of
larger particles [Lewis and Schwartz, 2004].

[5] While explored in various modeling studies [e.g.,
Feingold et al., 1999; Posselt and Lohmann, 2008], satellite
observations of CMA effect on shallow marine clouds are rare
[Yuan et al., 2008; L’ Ecuyer et al., 2009] and do not provide
sufficient quantitative information on the expected change in
cloud microphysical properties.

[6] In this work we make use of satellite data to quantify
the link between wind induced CMA and the size of marine
stratocumulus cloud droplets, near the top of marine strato-
cumulus clouds at the largest and most persistent subtropical
marine stratocumulus deck found over the Southeast Pacific
[Klein and Hartmann, 1993], off the coast of Chile and Peru.
The Southeastern Pacific stratocumulus cloud field (Figure 1),
was recently subject to extensive study in the framework of
the VOCALS project [Wood et al., 2011].

2. Data and Methods

[7] A major reason for the lack of observational evidence to
the coarse marine aerosol effect is the inherent difficulty of
acquiring simultaneous satellite measurements of the two
components (i.e. CMA and cloud microphysical properties)
in densely covered decks of marine stratocumulus. To over-
come this obstacle we use satellite measurements of surface
wind speed (W) as a proxy to coarse marine aerosol optical
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Figure 1. (a) True color MODIS-Aqua image showing a
dense closed cells marine stratocumulus (CC-MSC) deck.
The image is taken from the MODIS rapid response system
(http://rapidfire.sci.gsfc.nasa.gov/). (b) Probability distribu-
tion function of CC-MSC occurrence during June—August
2008. Data points are classified as CC-MSC if they are asso-
ciated with low (CTT > 280 K) and dense (CF > 0.9) clouds.
The black frame denotes the area covered by the true color
image in Figure la. The black contour marks the area where
the probability of occurrence is higher than 0.7, which defines
the regions of interest for Figures 2 and 3.

depth (7¢m), which represent the amount of coarse marine
particles found in the atmosphere [Lehahn et al.,2010]. Since
radiometric measurements of W are not affected by clouds,
this concept enables “observation” of CMA in locations
otherwise obscured by clouds.

[8] Atmospheric and oceanic parameters throughout a
5 years period (2004-2008) were obtained from two sensors
aboard NASA’s satellite Aqua: the Advanced Microwave
Scanning Radiometer NASA’s - Earth Observing System
(AMSR-E) and the Moderate Resolution Imaging Spectro-
radiometer (MODIS), both providing daily global observa-
tions of the ocean and atmosphere. The MODIS dataset
consists of daily, 1°, level 3 datasets of re¢ cloud fraction,
and cloud top tmp.

[v] AMSR-E data, which is obtained from Remote Sensing
Systems (RSS), Inc. (http://www.remss.com), is used for
extracting daily, 0.25°, observations of liquid water path
(LWP), sea surface temperature (SST) and surface wind
speed. Based on the wind speed we estimate coarse marine
aerosol optical depth, 7., using the equation recently derived
by Lehahn et al. [2010]:

Tem = 0.009 x (W — 4) +0.03
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with W corresponding to surface wind speed (independently
of wind direction) higher than 4 m/s. The suggested algo-
rithm, which is based on comparison between satellite
retrievals of W and aerosols over 6 tropical and subtropical
oceanic regimes, was validated against ground data from
several AERONET stations and is in agreement with other
studies linking surface wind speed and aerosol optical depth.

3. Aerosols or Meteorology?

[10] Clouds depend on both the local meteorological con-
ditions and aerosol properties. In most cases it is hard to
decouple the effect of aerosols on clouds from changes in
other environmental conditions. In our case, stronger surface
wind that enhances marine coarse particles formation might
be an indication for less stable meteorological conditions.
Recent study on shallow cumulus clouds showed a link
between wind speed and precipitation, attributing it to
boundary layer humidity while acknowledging the possible
effect of sea salt aerosols [Nuijens et al., 2009].

[11] In order to estimate the effect of aerosols on clouds,
one has to constrain the meteorological variance and examine
clouds and aerosols for a given meteorological state. Con-
sistent trends for different meteorological states may suggest
an aerosol effect, independently of meteorological influence
[Koren et al., 2010]. Here, to isolate the coarse aerosol effect,
we stratify the analysis to similar environmental conditions
and similar macrophysical cloud properties. The first step in
that direction is removing the impact of annual cycle by
analyzing a 3 month period during the austral winter (June—
August). Secondly, we try to avoid variations associated with
changes in cloud field morphology by focusing on decks of
Closed Cells marine stratocumulus (CC-MSC) as the one
seen in Figure la. A preliminary classification is performed
based on the cloud top height (represented by cloud top
temperature, CTT) and spatial density (cloud fraction, CF),
with pixels identified as being dominated by CC-MSC, when
they are both shallow (CTT > 280 K) and dense (CF > 0.9)
clouds. Based on this preliminary classification, a region
of interest (ROI) is defined as the area of highest probability
(P>0.7) for having CC-MSC throughout the 3 months period
(black contour in Figure 1b). Following that we further reduce
meteorological and macrophysical variance, by restricting
the analysis to narrow ranges of clout top temperature (281—
280 K), cloud fraction (0.9-1) and temperature difference
between cloud top and the sea surface (AT, 8-12 K). In
addition, the analysis is stratified to data associated with three
bands of LWP (25-50, 50~75 and 75-100 gr/m?), which, in
marine stratocumulus, is a parameter that captures much of
the cloud sensitivity to environmental conditions not related
to acrosol effects [Korolev, 1993; Pawlowska and Brenguier,
2003]. Similarly to CMA, LWP is positively correlated with
W via stronger evaporation and thicker clouds. On the other
hand, one expects the liquid water path to correlate negatively
with the entrainment speed, as the dry air overlying the cloud
dilutes cloudy air [Stevens, 2006; Wood, 2007]. Since surface
and entrainment speeds affect LWP, as a first approximation,
slicing the data to bins of equal LWP accounts for both
effects, while minimizing meteorological variance.

4. Results and Discussion

[12] The link between coarse marine aerosols and southeast
Pacific stratocumulus cloud droplet size is clearly seen in
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Figure 2. Cloud droplet effective radius, res, plotted against (a, ¢) estimated 7, (b, d) LWP, and (¢) W. Green data points in
Figure 2e show the empirically derived 7, dependence on W from Lehahn et al. [2010]. N denotes number of independent

samples, each corresponding to one da%l

and one pixel. In Figures 2a, 2b, 2¢ and 2d the data are plotted for different ranges of

LWP (25-50, 50—75 and 75-100 gr/m~, colored respectively in red, green and blue), while in Figure 2e only data associated
with 50 < LWP < 75 gr/m? is shown. The analysis is performed over the area of high CC-MSC occurrence probability (see
Figure 1) and is restricted to narrow ranges of CTT (281-283°k) CF (0.9-1) and AT(8-12 K). Data are sorted by 7.,

(Figures 2a and 2c), LWP (Figures 2b and 2d) and W (Figure

2e) and divided into 10 bins. Dots and error bars represent,

respectively, the mean and standard error of r.¢ within each bin.

Figure 2a, where 1. is plotted against wind-based estimates
of 7., over the region dominated by closed cells marine
stratocumulus (black contours in Figure 1b). For the three
LWP ranges rey is linearly correlated with 7.,, with a
remarkably consistent slope of 69.82 ym ' + 5.41, corre-
sponding to average r.s increase of 2.79 pum =+ 0.22 for a
twofold increase in 7., Over the whole range of 7,,, aver-
aged increase in ro¢ per LWP band is 3.38 um + 0.21.
The shift between the regression lines, associated with the
effect of changes in meteorological conditions (manifested in
LWP variability), is 1.34 gm =+ 0.07. Further examination of
the relative contributions to cloud droplet size variability is
done by correlating r.sr and LWP (Figure 2b). In agreement
with the above, the increase in r.¢ within a given LWP band
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(ALWP = 25 gr/m?) is 1.6 um = 0.54. This suggests that
approximately 1/2 of the r.g variance can be attributed to
aerosol perturbations and 1/2 to changes in meteorological
conditions manifested in LWP variability. Accordingly, dou-
bling of 7, corresponds to a 1.4 pym + 0.11 increase in reg.

[13] How does the effect of coarse marine aerosols com-
pares with that of fine anthropogenic aerosols? Similar
analysis performed over the southeastern Atlantic - an area
dominated by fine aerosols from biomass fires in southern
Africa [Kaufiman et al., 2005] - shows a weaker effect
of CMA on stratocumulus cloud droplet size (Figures 2¢
and 2d). Here, the averaged increase in r.s per LWP band
is 2.47 pum £ 0.44 (corresponding to a slope of 39.54 ym ' +
1.86), and the shift between the regression lines is 1.07 pm +
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Figure 3. (a)3 months mean (June—August 2008) of r.¢, emphasizing a distinct coast to open sea gradient. The black contour
marks the area of high CC-MSC occurrence probability (see Figure 1), and the crosses mark the pixels used for extracting the
cross-sections in Figure 3b. (b) Offshore cross sections of r.¢r for different ranges of estimated 7., (solid lines, data is restricted
to the narrow ranges of meteorological parameters detailed in Figure 2) and for the entire marine stratocumulus dataset (dashed
line, data associated with CTTc > 280 K and CF > 0.9). Dots and error bars represent respectively the mean and standard

deviation of rs at a given distance.

0.2 (Figure 2¢). The increase in r.g within a given LWP band
is 1.13 pm = 0.16 (Figure 2d), indicating that here also
meteorology and CMA contribute equally to r.¢ variance.

[14] Does the observed r.g variance result from meteoro-
logical effects not filtered out through stratification to con-
strained environmental conditions? Wind induced production
of CMA is expected to occur only when surface wind speed
exceeds 4 m/s (for weaker wind conditions, breaking waves
are rare if not entirely absent [Lewis and Schwartz, 2004]).
Consequently, when wind intensity is below 4 m/s the mea-
sured background levels of 7., do not depend on the wind,
while for stronger winds the two fields are well correlated
(green circles in Figure 2e, corresponding to results from
Lehahn et al. [2010]). We use this dependency pattern, which
characterizes coarse marine aerosols in equatorial and mid-
latitude regions, as a “sanity check” to our analysis results:
similarly to 7., at wind speed of ~4 m/s there is a distinct
transition from no to almost linear dependency of marine
southeast Pacific stratocumulus r.sron W (blue data points in
Figure 2e). This, together with the stratification to constrained
meteorological conditions, implies that the observed increase
in rer is indeed linked to CMA emitted to the atmosphere
through wind driven processes.

[15] While the meteorological and coarse aerosol effects
discussed above are the outcome of high frequency inter-
actions (typical time scales smaller than ~1 day), re, as
well as other microphysical properties, are also subject to
low frequency variabilities associated with regional changes
in environmental conditions. For the southeastern Pacific
marine stratocumulus cloud field, the regional scale vari-
ability is expressed by a distinct r.¢ gradient, with averaged
values ranging from approximately 11 pm near the coast
to 15 pum at the far most edge of the seasonal cloud field
(Figure 3a and dashed line in Figure 3b) during June—August
2008.

[16] Asrecently noted by Twohy et al. [2010], this offshore
gradient is likely to result from a combined effect of anthro-
pogenic aerosols increasing droplet number concentration
near the coast and meteorological factors decreasing LWP.
In view of the apparent importance of regional scale meteo-
rology to reg variance, further examination of the coarse
aerosol effect is done by plotting the change in rey as a

function of distance from the coast for 3 bands of 7.,
(Figure 3b). The cross sections are extracted from data
bounded by the same meteorological constrains used in
Figure 2, with LWP ranging between 50 and 75 g/m?. For a
given distance, the increase in CMA loading is associated
with increase in cloud droplet size. When comparing intense
(0.066 < T, blue curve) to negligible (7, <0.03, red curve)
coarse aerosol loading, the average change in regris 4.2 pm +
2.0. As suggested above, approximately 1/2 of this change is
attributed to the effect of coarse marine aerosols.

[17] In contrast to the effect of fine aerosol particles, it is
shown here that increase in coarse marine aerosol loading
(estimated from surface wind speed), is associated with
increase in droplets size of marine stratocumulus clouds. In
accordance with results from different model studies [e.g.,
Feingold et al., 1999], we propose that the shown association
is due to the enhanced particles. Since aerosol activation
strongly depends on aerosol size, the increase in concentra-
tion of large soluble sea salt particles is likely to produce
larger cloud droplets. At a later stage, those bigger droplets
are likely to grow more efficiently by collision-coalescence
processes. Apart from the direct effect of reducing cloud
reflectivity, increase in droplets size can also affect the effi-
ciency of rain processes [ Comstock et al., 2004]. Precipitation
has an important impact on the properties of marine strato-
cumulus clouds, and atmospheric aerosol is suggested to have
a key role in precipitation modulations [Feingold et al., 2010;
Wood et al., 2011]. These results strongly suggest that any
attempt to quantify the impact of anthropogenic and biogenic
marine aerosols on marine boundary layer clouds should take
into account the opposing effect of wind-induced coarse
marine particles.
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