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Patterns of exposure 
to SARS‑CoV‑2 carriers 
manifest multiscale association 
between urban landscape 
morphology and human activity
Gabriel I. Cotlier1, Yoav Lehahn2* & Doron Chelouche1

The outbreak of the Coronavirus disease 2019 (COVID-19), and the drastic measures taken to mitigate 
its spread through imposed social distancing, have brought forward the need to better understand the 
underlying factors controlling spatial distribution of human activities promoting disease transmission. 
Focusing on results from 17,250 epidemiological investigations performed during early stages of the 
pandemic outbreak in Israel, we show that the distribution of carriers of the severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, is spatially correlated with two 
satellite-derived surface metrics: night light intensity and landscape patchiness, the latter being a 
measure to the urban landscape’s scale-dependent spatial heterogeneity. We find that exposure to 
SARS-CoV-2 carriers was significantly more likely to occur in “patchy” parts of the city, where the 
urban landscape is characterized by high levels of spatial heterogeneity at relatively small, tens of 
meters scales. We suggest that this spatial association reflects a scale-dependent constraint imposed 
by the city’s morphology on the cumulative behavior of the people inhabiting it. The presented results 
shed light on the complex interrelationships between humans and the urban landscape in which they 
live and interact, and open new avenues for implementation of multi-satellite data in large scale 
modeling of phenomena centered in urban environments.

More than 50% of the world’s population presently lives in cities, with an estimate forecast of the urban popu-
lation in 2050 being around 10 billion1, making human health and well-being increasingly dependent on the 
dynamics of the urban environment. Current demographic trends, driven by rapid urbanization, migration 
flows, deforestation, climate change, inequality, and political instability have affected the dynamics of infectious 
diseases, and catalyzed the transmission of epidemic outcracks at global scale2. The increase in urbanization can 
function as an incubator for the spread of emerging zoonotic disease and epidemics3, and intra-urban crowding 
tends to promote the spread of infectious diseases4. The increase of urban agglomeration5, leading to a globally 
connected high population density, reinforces the need to better understand the possible impact of spatial changes 
in urban landscape on public health and in particular on the spread of diseases6.

Epidemiology and its association with spatial patterns of landscape and human activity have received much 
attention with the recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic, which causes the corona virus disease (COVID-19). Spatial data of COVID-19 incidence rates at county-
level across the US, reveal a strong positive relationship with income inequality7. Network connectivity approach 
was applied to VIIRS and census data to quantify spatiotemporal evolution of SARS-CoV-2 epidemic propagation 
in the US; the findings indicate that spatiotemporal evolution of the epidemic may be quantified by analyzing 
transportation networks of different connectivity levels8. Satellite nighttime light (NTL) radiance and Air Qual-
ity Index data, although not without their associated challenges9, have been used to characterize spatiotemporal 
changes of human activity before and during the pandemic in China, showing that NTL radiance increased in 
residential areas and decreased in commercial centers after government lockdown was imposed, while transpor-
tation and public facilities seem to remain unaltered10,11. Employing mobile data tracking, a large increase in the 
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daily usage of urban green areas by pedestrians and cyclists, who aim to preserve social distancing, was found 
in Oslo, Norway12. A body of research employing satellite observations has focused on analyzing the impact of 
SARS-CoV-2 epidemic restrictions on mobility and industry often showing reduction in anthropogenic emis-
sions and improvement in air quality13,14.

Following the large body of work on the spatial aspects of disease spread in general, and of COVID-19 in 
particular, here we address the important, yet poorly investigated question of whether predictable relationships 
can be found between urban landscape, human activity, and patterns of exposure to SARS-CoV-2. Specifically, 
we hypothesize that patterns of heterogeneity in the urban landscape impose spatially varying constraints on 
interpersonal proximity and crowding conditions, thus affecting the potential for the spread of COVID-19. To 
test this hypothesis, we investigate the spatial association between patterns of exposure to SARS-CoV-2 carriers, 
with satellite-based landscape-heterogeneity measure, and nightlight intensity data. As a case study we focus on 
Israel, highlighting a selected sample of 30 cities, during a one-month period of intense COVID-19 outbreak 
between March and April 2020. We further explore in some detail the largest conurbation in Israel, named Gush 
Dan, which includes the metropolitan area of Tel-Aviv and is home to about 50% of Israel’s population.

Results
Characterizing the spatial association between patterns of exposure to SARS-CoV-2 and urban landscape het-
erogeneity, requires an effective representation of the two components. According to the “patch-mosaic model”, 
landscape is composed of a structure of discrete units (or patches) assumed to have a relative inner uniformity 
and sharply defined boundaries which conform mosaics (or aggregation patches)15,16. Patchiness measures have 
long been used to characterize natural landscapes17–19, as well as for studying urban environments20–22. In order to 
accurately capture landscape heterogeneity across multiple scales, the definition of measures based on a continu-
ous signal enables to capture the potential loss of information resulting from dividing the landscape into separate 
categorical units23–25. Several continuous spatial indices26 were developed to analyze urban landscape heteroge-
neity, including approaches such as spatial autocorrelation27, Fourier analysis28, and wavelet transform29 among 
others. Here, for grasping landscape heterogeneity across scales while reducing potential loss of information30 
we apply a surface-based metric—the landscape patchiness index (LPI)—based upon scale variance model (see 
details in the Methods section). In general, high LPI values represent more "patchy" landscapes, with substantial 
variance at small spatial scales. In the data shown here, 95% of the LPI values range between -1.6 to -0.4.

The ability of the LPI to characterize multi-scale spatial patterns in the urban landscape, is exemplified by 
comparing randomly selected 480 m by 480 m Landsat images of urban areas characterized by different LPI 
levels (Fig. 1). Higher values of LPI, associated with high variance on small scales are often characteristic of 
highly developed urban regions, with relatively narrow streets in between the buildings, whereas lower values 
of LPI imply smoother landscapes, with less variance on small scales (compare lower and upper panels in Fig. 1, 
respectively). Note that the observed patchiness may also depend on seasonal effects (e.g., the presence of vegeta-
tion or lack thereof), as well as on the illumination angle of a non-smooth terrain (e.g., the casting of shadows 
by buildings, hills, and creeks). We find that although patchiness values are wavelength-dependent, the trends 
obtained here are robust.

Complementary information on the spatial characteristic of the urban landscape and its expression in patterns 
of human activity is obtained by the NTL. The NTL is commonly used in urban studies, and has been associated 
with socioeconomic dynamics32, population density33, urbanization34, crime analysis35, migrations36, military 
conflicts37, spread of epidemics8 identification of commercial areas38, and tourism39, constituting a good predic-
tor of the magnitude of human activity.

Spatial characteristics of reported locations of SARS-CoV-2 carriers (RLSC) between 10/03/2020 and 
14/04/2020 corresponding to the initial wave of COVID-19 were analyzed from the public spatiotemporal 
database compiled by the Israeli Ministry of Health40. The database consists of the results of epidemiological 
investigations, showing known locations of SARS-CoV-2 carriers up to two weeks prior to their diagnosis (after 
being diagnosed SARS-CoV-2 carriers have been immediately isolated). For the period covered by this study, 
the database consists of 17,250 reported RLSCs. To characterize the RLSC locations, we classify them into 7 cat-
egories of human activity according to the information provided in the epidemiological investigation, based on 
a randomly selected sub-sample of 10% of the total RLSC data set (Fig. 2). The largest amount (39%) of RLSCs 
were categorized as religion-related (including synagogues, Jewish religious studding centers, traditional baths, 
etc.); followed by recreational venues (17%, including culture establishments, restaurants, bars, coffee shops, 
sports centers, youth clubs, playgrounds, etc.); commercial grounds (13%, including different kinds of shops 
such as cloth, food, computers, cellphones, etc., as well as commercial services); supermarkets and grocery 
stores (11%, including small local to large chains); health facilities, (10% including clinics, hospitals, pharma-
cies, etc.); and education establishments (6%, including from kindergartens to universities, language school, 
research centers, etc.).

To further investigate the factors underlying spatial distribution of RLSC we compare it with the spatial 
characteristics of surface measures extracted from satellite data. We first focus our analysis on the Gush Dan 
District, which is a densely populated area including Tel Aviv city and its metropolitan area. It has total popu-
lation of approximately about 4 million residents, comprising about 44% of the population of Israel41 (Fig. 3). 
The dependence of RLSC distribution on landscape morphology can be qualitatively observed in a true colors 
satellite image, which emphasizes the fact that RLSC data points are mostly found in highly developed urban 
areas (Fig. 3a). In agreement with that, RLSCs are mostly found in areas of high NTL levels, with mean values 
of 72.166 ±0.574  (nWcm-2). For comparison, the average NTL level in regions with no reported RLSCs is 19.78 
±0.273 (nWcm-2) (Fig. 3b). Interestingly, a tracer to RLSC distribution in space is also provided by the LPI, 
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which is characterized by average values of -0.343 ±0.007 and -0.522 ±0.002 , for grid cells containing and not 
containing RLSC data points, respectively (Fig. 3c).

Following this relatively coarse analysis, which largely reflects distinction between urban and non-urban 
landscapes, we next probe the landscape patterns underlying RLSC spatial distribution at the city scale. To this 
end, we first compare average NTL and LPI values at locations with RLSCs to those values at locations without 
RLSC. We do so for the 30 cities reported by the Israeli Ministry of Health to have more than 100 RLSCs (Fig. 4). 
We find that average LPI and NTL values are significantly higher at locations with reported RLSCs in 77% and 
90% of the cities, respectively. This demonstrates that LPI, like NTL, can be used as a tracer of intense human 
activity within the urban landscape.

The association between the RLSC and the spatial characteristic of the urban landscape is emphasized when 
considering the median RLSC values for locations as a function of LPI/NTL (the LPI/NTL range is divided into 
bins, and the median RLSC is calculated for all locations corresponding to those bins). Results for the entire area 
covered by the Ministry of Health reports are shown in Fig. 5. Evidently, similar behavior is found for the NTL 
and for the LPI, whereby higher values, which correspond to more developed areas, are associated with a higher 
(median) RLSC values. Interestingly, there is little dependence of the median RLSC on the LPI or the NTL for 
low values in those properties. In contrast, a much steeper relation is observed for higher values of NTL, LPI, 
and RLSCs. The similar behavior of NTL and LPI statistics further demonstrates that LPI, like NTL, is a tracer 
of human activity and development.

Conclusions
Using an integrated dataset comprised of satellite observations and results from epidemiological investigations, 
we explore the interrelationships between spatial characteristics of urban landscape, human activity, and dis-
tribution patterns of reported locations of SARS-CoV-2 carriers, or RLSC, in a highly populated region in the 

Figure 1.   Examples for variations in urban landscape, as observed in Google map satellite images of cities in 
the Gush Dan District, across different ranges of LPI. Figure created using QGIS 31. For data sources of this 
figure see “Methods” section, subsection “Satellite data”.
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state of Israel. Our results show that at least for the time and location covered in this study, satellite-based levels 
of NTL and LPI are statistically significant measures of the likelihood of a given region within the urban area to 
host a RLSC. While linkages between NTL and different aspects of human activity were previously investigated 
in numerous studies 8,32––39, the association between spatial patterns of human activity, and satellite-derived 
urban landscape heterogeneity, as expressed here by the distribution of RLSC and levels of LPI, respectively, to 
the best of our knowledge is shown here for the first time.

This research strongly relies on epidemiological investigations that are meant to track trajectories SARS-
CoV-2 carriers prior to being diagnosed, in order to identify potential cases of exposure and, ultimately, stop 
the chain of infection. Spatial distribution patterns of RLSC emerging from the investigation are therefor most 
likely linked to patterns of human agglomeration and reflect pathways of disease spread. Accordingly, the spatial 
association between RLSC and NTL can be explained by the fact that higher values of the NTL simply represent 
areas of intense human activity, where encounters between people are more frequent.

Figure 2.   Pie chart describing the classification of RLSCs into human activity types.

Figure 3.   Spatial distribution of RLSC in Gush Dan District. RLSC in Gush Dan (red points), overlaid on (a) a 
Google maps satellite image. Blue line delineates the borders of Gush Dan district; (b) NTL map; (c) LPI map. 
Note that RLSCs preferentially occur in regions with high LPI values, which correspond to regions with high 
NTL values. Panel 3a created using QGIS31, panels (b,c) created using MATLAB43 (for more information see 
“Method” section, subsection “Satellite data”).
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Figure 4.   NTL and LPI statistics for our sample. Bar plot showing the mean of (a) NTL and (b) LPI in grid cells 
with exposures (blue bars) and without exposures (red bars) for the 30 cities with more than 100 reported RLSC 
cases. For comparison we also present the statistics for the full sample of cities, as well as that for the Gush Dan 
conurbation. Also denoted above the bars for each city/region are the p-values ( 0 ≤ p ≤ 1 ) with which our null 
hypothesis—that the average NTL/LPI values for RLSC and for regions with no reported exposures are drawn 
from the same distribution—holds. Note that in almost all of the cities both NTL and LPI values are significantly 
higher at locations with finite RLSC values.
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While NTL values are directly linked to the level of human activity, LPI captures the spatial characteristics of 
the urban landscape in which the human activity takes place. We suggest that the spatial association between LPI 
and RLSC reflects a fundamental scale-dependent constraint imposed by the morphology of the city’s landscape 
on the cumulative behavior of the people inhabiting it. Accordingly, patchy (i.e. high LPI) sections of the city, 
in which landscape variance becomes important at small spatial scales (a few to tens of meters) that resonate 
with typical scales of human interactions, are more prone to human agglomeration and crowding, and thus to 
disease spread. In contrast, in areas of homogeneous landscape, with relatively small contribution to the overall 
landscape variance from small scale patterns, encounters between people are, in general, less frequent. Conse-
quently, as observed here, events of exposure to SARS-CoV-2 carriers are significantly more likely to occur in 
patchy parts of the city.

In addition to improving our understanding on the interrelationship between humans and the urban land-
scape in which they live and interact, the unique observations presented in this work open new avenues for 
implementing multi-satellite data, as the ones used here, in large scale modeling of phenomena centered in urban 
environments. Specifically, the significant relationship between LPI and RLSC allows incorporating the effect of 
urban landscape morphology, as traced by satellite data, in epidemiological models. Such implementation is likely 
to improve human society’s ability to predict, and potentially mitigate, the spread of diseases as the COVID-19.

Methods
Epidemiological data.  Spatial characteristics of reported locations of SARS-CoV-2 carriers (RLSC) 
between 10/03/2020 and 14/04/2020 were analyzed from the public spatiotemporal database compiled by the 
Israeli Ministry of Health40. The database consists of the results of epidemiological investigations, conducted 
on positively diagnosed SARS-CoV-2 patients. The database was updated on a daily basis, with results available 
online for a 2-week period. From this database we used georeferenced information on locations of SARS-CoV-2 
carriers to two weeks prior to their diagnosis.

Extraction of the landscape patchiness index (LPI).  We introduce a modified version of an analytical 
method based on the so-called “geographic variance” or “scale variance” approach42,44,45 for describing the for-
mation and spatial dynamics of landscape heterogeneity across scales46. Employing a nested hierarchy of levels 
across multiple scale enables to capture each level’s independent contribution to the total system’s variance. Dif-
ferent versions of this method haven been applied in different disciplines such as oceanography47, and economic 
geography48. Here we employed a mosaic composed of three Landsat 8 Level-2 surface reflectance images down-
loaded from USGS Earth Explorer49, corresponding to the green visible range (0.525–0.600 µm) and having a 

Figure 5.   Correlation between RLSC and NTL (blue curve) and LPI (black curve). Dots and error-bars denote 
the median and standard deviation in each bin, respectively. Note the qualitatively similar behavior for the NTL 
and LPI statistics demonstrating the commonalities between LPI and NTL as tracers of human activity and 
landscape development.
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native spatial resolution scale, l0 = 30 m. The scale-dependent variance, σ2n is calculated within sub-image tiles 
of size ln = 2nl0 , with n = 1,2,3,4 so that the maximum tile-size considered is lmax = 480 m, which is comparable 
to the VIIRS night-light image resolution50. The calculation of the LPI proceeds as follows: the scale-dependent 
mean variance, ⟨σ2

n
⟩ is obtained by averaging over σ2n-values for all the sub-image tiles of size ln that are within 

in a given tile of size lmax . A powerlaw fit to the scale-dependent variance, �σ2n� ∝ n−p is then obtained, where p 
corresponds to the LPI at that location. Higher values of p imply substantial variance on small scales, which often 
characterizes developed regions, where structures are of order human scales, which are ≪ lmax (see examples in 
Fig. 1). Conversely, lower values of p imply smoother landscapes.

The above approach, whereby a single powerlaw model is fit to the scale-dependent variance, assumes no 
preferred length-scale over the scale-range probed. This assumption cannot be verified on a tile-by-tile basis but 
can be justified by calculating the average scale-dependent variance for the entire region and fitting a powerlaw 
model to the ensemble average. Specifically, deviations from a powerlaw fit over the scale-range probed are 
typically less than 10% (Fig. 6). This combined with the fact that spatial patterns are clearly discernible in the 
LPI map, and that good correlations are observed between it and independent datasets, support the powerlaw 
model employed here. The study of the small deviations from a powerlaw behavior is beyond the scope of the 
present work.

Satellite data.  The LPI is derived from Landsat 8 Level-2 surface reflectance images of the 31 of July 2017 
downloaded from USGS Earth Explorer49, corresponding to the green visible range (0.525–0.600  µm) with 
30 m of spatial resolution. Nighttime light intensity is derived from monthly average radiance composite data of 
July 2017 from Suomi National Polar-orbiting Partnership (SNPP) VIIRS Day-Night Band (DBN) downloaded 
from Google Earth Engine51 with an estimated spatial resolution of 15× 15asec2 , which roughly corresponds 
to 460× 460m2 for the latitude of study (Fig. 3b). The true colors satellite images shown in Fig. 1 and 3a were 
downloaded from Google maps (https://​www.​google.​com/​maps/).

Data availability
Israeli Ministry of Health geodatabase is freely available at https://​imoh.​maps.​arcgis.​com/​apps/​webap​pview​er/​
index.​html?​id=​20ded​58639​ff4d4​7a2e2​e36af​464c3​6e&​locale=​he&/ Landsat 8 data is freely available from USGS 
Earth Explorer at https://​earth​explo​rer.​usgs.​gov VIIRS data is freely available at https://​devel​opers.​google.​com/​
earth-​engine/​datas​ets/​catal​og/​NOAA_​VIIRS_​DNB_​MONTH​LY_​V1_​VCMCFG.

Received: 9 September 2020; Accepted: 30 September 2021

Figure 6.   The average scale-dependent variance and the definition of the LPI. Upper panel shows the scale-
dependent variance (normalized by the square mean of the map) when averaged over all tiles comprising 
our region of study. A monotonically increasing variance with scale is clearly seen, which is well traced by a 
powerlaw behavior (dashed line) with an average LPI of -0.6. Lower panel shows deviations between the data 
and the best-fit powerlaw model, which are at the ≤ 10%-level.

https://www.google.com/maps/
https://imoh.maps.arcgis.com/apps/webappviewer/index.html?id=20ded58639ff4d47a2e2e36af464c36e&locale=he
https://imoh.maps.arcgis.com/apps/webappviewer/index.html?id=20ded58639ff4d47a2e2e36af464c36e&locale=he
https://earthexplorer.usgs.gov
https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG
https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG
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