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Abstract. The differences in North African dust emission  Based on cross-correlation analyses, we attribute the ob-
regions and transport routes between the boreal winter anderved rhythm to the contrast between the northwestern and
summer are thoroughly documented. Here we re-examinaouthern Saharan dust source spatial distributions. Despite
the spatial and temporal characteristics of dust transport ovethe vast difference in areas, the B Depression, located
the tropical and subtropical North Atlantic Ocean, using in Chad, appears to modulate transatlantic dust patterns about
10yr of satellite data, in order to better characterize the dif-half the time.

ferent dust transport periods. We see a robust annual triplet:
a discernible rhythm of “transatlantic dust weather”.

The proposed annual partition is composed of two heavy,
loading periods, associated here with a northern-route perio&
and southern-route period, and one light-loading period, ac;
companied by unusually low average optical depth of dust.

: ) . . 'nent in a range of processes involving Earth’s radiative bud-
The two dusty periods are quite different in character: their 9 b g

: s . et (e.g. Highwood et al., 2003), generation of clouds and
duration, transport routes, characteristic aerosol loading an&ain (e.g. Prenni et al., 2009), atmospheric chemistry (Usher
frequency of pronounced dust episodes. o ’ '

Th h ¢ iod | ths. It is ch et al., 2003 and the references therein), biogeochemical cy-
€ southern-route period fa months. 1 IS char  ¢jag (e.g. Jickells et al., 2005), and it has an important impact
acterized by a relatively steady southern positioning, low

-~ .on human lives (e.g. Ozer et al., 2007). The Atlantic Ocean
frequency of dust events, low background values and hig s the major pathway of dust transport from North Africa,

variance in dust loading. The northern-route period Ias‘tsthe latter being the Earth’s largest source of mineral dust

N6'3 n;on(;hls Ia':'ltd (;S 3SS?C'atedh\.N'th is?)tgidy dr'g} n?rth'(e.g. Huneeus et al., 2011). Therefore, transatlantic dust is
ward o .1 latitude day-, reaching m north o é:)fspecial importance.

the southern-route. The northern period is characterize : . .
. . ) North African dust sources are spread over six major re-
by higher frequency of dust events, higher (and variable) . "~ ; - .
. ; : . ions: (a) over dry lakes in Tunisia and Northern Algeria,
background and smaller variance in dust loading. It is les " X
Ce ) (b) along the foothill of the Atlas Mountains and the western
episodic than the southern period.

Transitions between the periods are brief. Separation be(-:OaSt and Mauritania (c) along the border between Mali and
tween the southern and northern periods is marked by north'-Alge”a’ (d) in Central Libya and (€) over southern Egypt and

ward latitudinal shift in dust transport and by moderate re_Northern Sudan. Regions b and ¢ occupy vast regions over

. . ~.. _ northwest Africa. Additional r rea i h i
duction in the overall dust loading. The second transition orthwest ca. Additional source area is (f) the @il

. . ression, in Chad. Itisin hern ition and it is rec-
between the northern and southern periods commences Wltglep ession, in Chad. Itis in a southern position and it is rec

S : ) . gnized as the vigor dust source in North Africa (Koren et
2?38“;?;{;: d“ggg;{”g#ggigg?&g?: troatglld shift southwardgll’ 2006; Huang et al., 2010; Formenti et al., 2011 and the

references therein).

Introduction

tis well recognized that mineral dust is an essential compo-
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2 Y. Ben-Ami et al.: Discernible rhythm in the spatio/temporal distributions

Dust transport over the Atlantic has been extensively stud- a.  Winter
ied using a variety of sensors, models, and data-sets such as “
satellite retrievals (e.g. Karyampudi et al., 1999; Chiapello § 2o
and Moulin, 2002; Torres et al., 2002; Kaufman et al., 2005a; g :
Huang et al., 2010; Christopher and Jones, 2010), field ex-2 ° [§
periments (e.g. Reid et al., 2003; Ansmann et al., 2011), 3 ,,
long records of ground measurements in the western Atlantic & ,6‘0 TR o _6‘0 TG
(Prospero, 1996, 1999), back-trajectory analysis (e.g. Engel- Longitude (deg) Longitude (deg)
staedter et al., 2009) and transport models (e.g. Ginoux et
al., 2004; Schepanski et al., 2009). These studies recognized c.
a pronounced annual cycle, marked by a latitudinal shift in 40— ; 0.5 40 = w05
the transport route over land and ocean and by change in th@
location of the active dust sources. i

Semi-annual “beat” of the Inter Tropical Convergence So 0.2
Zone (ITCZ) that modulates shifts in the prevailing meteo- &
rological conditions, the resulting triggering of some of the
North African dust sources, and the actual advection of dust,
form a complex chain towards transatlantic dust transport.

Are there any robust patterns to be expected? To put Ouhg 1. Seasonal averaged values of dajyfor (a) the boreal winter
questions in proper context, we shall briefly review reIevant(December—February(b) spring (March—May)(c) summer (June—

spatio/temporal patterns discussed in prior literature. August) and(d) fall (September—November), for the years 2000
During the boreal summer the border between the north-2009.

easterly, dry and hot Harmattan trade winds, the West
African heat low, and the monsoon southwesterly flow of
moist and cool air from the tropical Atlantic creates the In- 1988; Karyampudi et al., 1999). Part of the dust is trans-
ter Tropical Front (ITF) (Janicot et al., 2008; Lavaysse etpPorted within the marine boundary layer (Reid et al., 2002;
al., 2009; lele and Lamb, 2010). The ITF is located a few Ben-Ami et al., 2009). Occasionally, the dust is transported
hundred kilometers ahead of the ITCZ. It supports favorablevia a northern route by the anticyclonic flow over the Azores
conditions for dust emission, mainly over the northwesternof Canaries Islands (Karyampudi et al., 1999). In situ mea-
part of Africa, such as enhanced surface gustiness (EngeBurements show that the SAL has frontal characteristics, in-
staedter and Washington, 2007) and cold-pool outflow (Boucluding gradients in dust concentration, temperature, relative
Karam et al., 2008). Towards the boreal winter, the synoptichumidity, and winds that are pronounced along its leading
systems retreat to the south, and the Harmattan winds beand southern edges (Karyampudi et al., 1999; Reid et al.,
come an important mechanism for emission of dust. A low2003).
level jet, frequently embedded within the Harmattan winds, During the boreal winter the dust transport routes shift
triggers emission of dust over the Beid depression in Chad ~ southward, in accordance with the shift of the synoptic sys-
(Washington and Todd, 2005), a vigorous dust source on 4&ms and the derived location of the active dust sources.
global scale. Northwestern African dust sources become less active and
Throughout the year, the dust is transported through arthe Bocklé become the most persistent active dust source
east-west corridor over the tropical and subtropical Northern(Engelstaedter and Washington, 2007). The dust, partly

Atlantic. The corridor is generally bounded by the ITCZ in Mixed with biomass burning smoke (Formenti et al., 2008),
the south, and the westerly winds at mid-low level (locatedcrosses the coast of West Africa over the Gulf of Guinea, cen-

north of ~25-30 N) in the north (Christopher and Jones, tered at~4° N, and is advected towards the northern part of
2010) The transport route over the ocean moves a|ong th§0Uth America. Results from recent field eXperimentS show
meridian, in accordance with the shift of the synoptic sys-that the characteristic vertical structure of the aerosol column
tems over land. The spatial distribution of the Aerosol Opti- is dust in lower altitudes, up te2 km, and a mixed dust and
cal Depth (AOD) of dustdy) along the seasons is shown in biomass smoke layer at the upper few kilometers (Formenti
Fig. 1a—d. et al., 2008; Johnson et al., 2008a; Ansmann et al., 2011;
During the boreal summer, the dust is transported westKnippertz et al., 2011; Weinzierl et al., 2011). They also
ward towards the Caribbean Sea and the southern part gihow the dominance of dust in those winter plumes: mineral
North America (Huang et al., 2010). Generally it is em- dust contributes 72% of the aerosol mass in aged elevated
bedded within the Saharan Air Layer (SAL), centered atbiomass burning layers, 91% in fresh biomass burning lay-
700 hPa, above the northeasterly cooler and moister trad@rs and up to 93 % in plumes of mineral dust (Formenti et al.,
winds of the marine boundary layer (Prospero and Carlson2008).
1972; Prospero and Nees, 1977; Karyampudi and Carleson,
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Y. Ben-Ami et al.: Discernible rhythm in the spatio/temporal distributions 3

Detailed description of dust transport during the boreal 40
summer months is given in Karyampudi et al. (1999), Reid et
al. (2003), Schepanski et al. (2009) and Huang et al. (2010)
and during the boreal winter in Kalu (1979), Schepanski et
al. (2009) and Huang et al. (2010).

Overall, previous studies approached the North African
dust transport over the Atlantic Ocean within the tradi-
tional temporal partition of the year, generally the quar- -
terly monthly partition (DJF MAM JJA SON) as markers 20 . "
for changes in dust transport patterns. The tacit assumption - .
is that temporal variations in dust loading follow the con- -100 -80 -60 -40 -20
ventional seasonal division. Here we ask whether the con- Longitude [deg]
ventional seasonal divisions constitute the best framework to
study and describe the transatlantic dust routes. Fig. 2. Averaged values of dailyy for the years 2000—2009. The

In order to answer this question, we investigate the spatiaptudy area is delineated by thick black line.
and temporal transport patterns of dust loading over the At-
lantic Ocean to extract the natural annual cycle of dust over
this region and to find improved markers for dust transportitime and anthropogenic aerosol loading that were estimated
periodicity. We then proceed to compare dust emission patoVer specific regions where each type of aerosol is con-
tern from the Bodlé depression to the transport patterns in centrated. Since the prevalent conditions represent average

order to interpret the observed differences between the dugterosol loading, we expect thaf may be under (over) es-
periods. timated on occasions of high (low) dust loading. Addition-

ally, g may be contaminated by the contribution of other

types of aerosol. The expected error in derivationt@f
2 Data increases during the Sahelian biomass burning season (De-

cember to February), when the dust transport route passes
The annual cycle of North African dust over the Atlantic over the biomass burning region and the dust is mixed with
Ocean was studied using daily retrievals of total AOD ( biomass smoke (e.g. Formenti et al., 2008; Weinzierl et al.,
at 550 nm, obtained from the MODerate resolution Imaging2011).
Spectroradiometer (MODIS) instrument aboard Aqua and Recent field experiments and remote sensing studies pro-
Terra satellites. We used Aqua data for the dates betweeposed that the biomass smoke fine mode fraction is near unity
June 2002 and December 2009 and Terra data for April 200@e.g. Johnson et al., 2008b; Capes et al., 2008; Eck et al.,
until December 2009, both in spatial resolution 6f 1All 2010). The value we used in this work is 0.9, based on stud-
data were taken from collection 5, except the data for 2009jes by Kaufman et al. (2005a) and Yu at al. (2009) and the
Aqua, when only collection 51 was available. Over ocean thereference therein. To the best of our knowledge, there are no
expected error for MODIS retrievals #50.03 + 0.05 (Re- studies suggesting that biomass smoke fine mode fraction can
mer et al., 2008). be smaller than 0.9. Therefore, to estimate the sensitivity of

The AOD is a result of extinction by all aerosol types sus- 7q separation algorithm and to bound the possible error, we
pended in the atmospheric column. Over the Atlantic Oceanre-ran the calculations with biomass smoke fine mode frac-
7 is likely to be the sum of mineral dust, maritime and anthro- tion of unity (meaning, no contribution to the coarse mode by
pogenic aerosol from urban and industrial sources and fronbiomass smoke aerosol) and compared the results to our orig-
biomass burning. The fraction af associated with desert inal results. The sensitivity analysis during the boreal winter
dust, g, is estimated in this work using the following pa- yields an estimated bias of less than a percent and standard
rameters: (a) MODIS retrieval of aerosol fine mode fraction, deviation 0f~18 % in thery due to biomass smoke contam-
defined as the fractional contribution of aerosol with diame-ination. Since the distribution of the differencestinesti-
ter <1 um to the totat and attributed to all types of aerosol, mations is sharper than a normal distribution, our sensitivity
(b) estimation of the aerosol fine mode fraction for each onestudy suggests that more than 85 % of the results are bounded
of the three types of aerosol, and (c) estimation of marinewithin an error of+18 %. Additional possible source of error
AOD, based on the wind speed at 1000 hPa, acquired fronin our analysis can be an overestimationrdfy ~0.02 due
the National Center for Environmental Prediction (NCEP) to cloud-contamination (Kaufman et al., 2005b). Neverthe-
reanalysis (Kalnay et al., 1996). Detailed descriptions of theless, by averagingg over large area and focusing on the low
method can be found in Kaufman et al. (2005a) and Yu etfrequencies of the annual dust’s cycle, we expect the above
al. (2009). errors to be insignificant.
Note that this algorithm for extracting is based on some The study area (marked in Fig. 2) was determined based

assumptions regarding the prevalent conditions of dust, maren the spatial distribution ofy between the years 2000 and

Latitude [deq]
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4 Y. Ben-Ami et al.: Discernible rhythm in the spatio/temporal distributions

a. natural annual cycle of transatlantic dust follows three dis-
34 ! tinct periods and associated spatial patterns.
oe 3.1 Spatial distribution
24 IR 0.5
b L M ! ‘ Figure 3 shows results of spatial analysis using longitudinal
o, ! H e A 0.4 and latitudinal Hovriller diagrams (Hovrdller, 1949) ofty
514 o i over the study area. Two distinct periods of high dust loading
3 e 0.3 . .
b= and one clean period, when dust loading reduces sharply, are
3 .,  recognized.
The first dusty period, occurring approximately between
0.1 the end of November and the end of March, is characterized

by southern transport route that spreads over almost unvary-
JFMAMSUJJAGSOND ing latitudinal belt, centered at4° N. During these months,
Time [Month] the dust is advected toward the Atlantic Ocean over the north-
ern coast of the Gulf of Guinea and spreads betweéreE10
and 50 W, reaching the northern part of South America.
This period will hereafter be denoted as the southern-route
period (SRP).

During the second dusty period, occurring approximately
between the end of March and mid October, the transport
route is characterized by pronounced latitudinal shift in the
dust plumes location over the Atlantic of 0.1 latitude day
(12kmday 1), reaching~1500km northwards (Fig. 3a).
Over the ocean, the dust spreads between the Saharan coast
and 60 W. The center of the dust plume, betweed® N
and 22 N, changes with time. This period will be called the
northern-route period (NRP).

The transition from the SRP to the NRP is marked by a
latitudinal shift, accompanied by a brief period of reduced
4. While the southern route is fixed around latitudeN4
(Fig. 3a), the northern route drifts northward. Between the
NRP and SRP there is a clear clean period, characterized by

Longitude [Deg] abrupt reduction in the overall oceanic dust loading, shown

as vertical and horizontal blue stripes on Fig. 3a and b.

Fig. 3. Latitude-Time(a) and Longitude-Timégb) Hovmbller dia- Focusing on oceanic regions only and averaging for all lat-

grams ofrg over the study area. Each diagram is based-@0yr jtudes of the study area creates apparent discontinuity. Dur-

of MODIS data. The y-axis in Fig. 3a marks the latitudes along jng the NRP, the dust arrives the Atlantic Ocean from the Sa-

the study area. The x-axis in Fig. 3b marks the longitudes alongyaran coast which is located in a western position compared

the study area. The transitions between the southern-route perlocé0 the Gulf of Guinea. Therefore, during this season (NRP)

northern-route period and the clean period are marked by magenta_, .. . ' )

lines. relatively clean ocean is averaged over the Gulf. This cre-
ates the apparent discontinuity in the dust loading east-west
gradient (Fig. 3b).

2009, as shown by the analyzed data, and in accordance with D_urlng t_he clea_m month period, the yvhole dust emission

previous studies (e.g. Kaufman et al., 2005a; Huang et aI.SettIng quickly migrates back south with an average speed

~ i 1 1

2010). Time series ofy were extracted by averagingmea- of ~0.2 Iatltl;detdlago O(Ifl km dti)T )- q Théea;rj;splgrt r(t)rl:te

surements of both MODIS instruments over the study area. reappears abou M southward, neavdmarking the
beginning of the southern-route season and the opening of a

new annual cycle (Fig. 3a).
These rates of northward advance and southward retreat
3 Results in dust transport routes are in very good agreement with the
rate of the ITF movement at those times of the ye&l&land

Based on analyzing the spatial distribution of dust loading-2mP: 2010).
(zq), time series of averaged dust loading over the study area
and the inter-seasonal loading frequency, we propose that the

-6

« 2 P =2 T <«

Time [Month]

o Z O »nw »
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Fig. 4. (a) Daily ty4 for the years 2000-2009, averaged over the
study area (blue). Smoothed data, generated via the low-pass filter,
is shown by the red curvéb) a yearly view of all the smooth data
(black) with their average marked in red. The smoothed time seried 9. 5. (a)Daily rq averaged over the study area for the years 2000

clearly show a double peak feature for the SRP and NRP, followed2009 plotted as a function of time. The transitions between the
by the clean period minimum. SRP the NRP and the clean period are marked by magenta lines;

(b) histograms of dailyty for the years 2000—2009, averaged over
the study area for the NRP (red), SRP (blue) and the clean period
(black).

AOD of dust

3.2 Dustloading

To compliment the information from the Howtler dia-
grams (Fig. 3), in Fig. 4a we display time series of daily than 15x 10f km?, suggests a coherent emission of dust from
74 averaged over the study area along with the correspondmany sources throughout North Africa. These massive emis-
ing low-pass filter curve. The low-pass filter was tuned to sions occur only a few times per year. The unusual weather
the time scale of several weeks using Daubechie’s waveletsonditions during these events and part of their climatic im-
(level 6, Daubechies, 1992). pacts were described by Knippertz and Fink (2006), Slingo et
The averaged filtered curve (Fig. 4a and b, red curve)al. (2006), Cavazos et al. (2009), Tulet et al. (2008), Thomas
shows a double peak signal followed by a clear minimum,and Gautier (2009), and Bou Karam et al. (2010).
in agreement with the classification of two dusty periods and Following up on the periodicity gleaned from the time se-
one short clean period, as described above. The first annuaies of ty, as shown in Fig. 4a and b, and plotting the daily
maximum is attributed to the SRP and the second one to thaveragedry vs. the day in the year, major differences be-
NRP. The factor of 3 reduction in the value @f, from av-  tween the SRP and the NRP are revealed (Fig. 5a). It is ap-
erage of~0.24, during the maxima of the NRP, t60.08, parent that the SRP is characterized by an almost constant
during the minima of the clean period, renders this a distinctbackground dust loading afj ~ 0.15. On top of this flat
period: the atmosphere over this part of the Atlantic Ocearbackground there are events of very high dust loading with
is substantially less dusty and more transparent. daily averagerg > 0.5, represented also by the pronounced
Extreme episodes are evident during both dusty periodsight tail in the corresponding histogram ef as shown in
(Fig. 4a, blue curve — not filtered data). These events ap¥ig. 5b. High variance in dust loading during this period
pear as distinct peaks that are up to 5 times higher thars in agreement with previous studies (e.g. Chiapello and
the local average (Fig. 4a, red curve). The existence oMoulin, 2002). In contrast, the NRP background dust load-
such spikes, despite the spatial averaging over area of moriag changes through time: it increases from approximately

www.atmos-chem-phys.net/12/1/2012/ Atmos. Chem. Phys., 12102012
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Fig. 6. (a) Time series of the SRP (blue) and the NRP (red) signal after subtraction of the seasonality curve. Each signal is composed of
9 segments from 9yr and each segment contains 60 days around the maxima of the period (see red line in Fig. 4a), total of 540 points;
(b) results of Fourier transform of the two signals in Fig. @3;autocorrelation function for the two periods.

0.15 at the beginning of the period to 0.25 at the peak of,
the period (mid July), followed by a decrease to values of
less than 0.1 during the minimum of the clean period (early
November). The variance ef during the NRP (0.007) drop

by more than an order of magnitude relative to that of the
SRP (0.01), suggesting a more continuous flow of dust to the
ocean during the NRP.

Cross correlation
]

3.3 Inter-seasonal frequency content

b.

Following the above results we explored the spectral content
of the two dusty seasons in more detail. For each period, seg-
ments of 60 days around each maximum were concatenated
into a single continuous time series throughout the 9yr be-
tween 2001 and 2009, keeping the chronological order. The ! ! aLA :
seasonal trends were removed by subtracting the low fre- 015556 3000 1000 0 1000 2000 3000
quency curve, representing the average annual trend, from Lag (days)
the daily data (i.e. blue curve minus the red curve, Fig. 4a).
Figure 6a shows the two time series generated for the SRP-
and the NRP. The frequency content in means of periods of
both signals is shown in Fig. 6b. The differences in the pat-
terns of dust loading are clearly evident both in the time se-
ries and in the frequency domain. The SRP has pronounced
intense and longer-lasting coherent events. This can also be
seen from the autocorrelation curves (Fig. 6¢): SRP decays
more slowly than the NRP and exhibits higher correlations
for longer lags.

0.2f--—

0.1}

Cross correlation

Cross correlation

Lag (days)

Fig. 7. Cross-correlation between the Bdé AOD loading (for
the area between 1818 and 15-19 E) andzy over the Atlantic
Ocean (area marked in Fig. 2) befdeg, and after(b) subtracting
the seasonal signdl;) enlargement of Fig. 7b for 50 days lag.

3.4 What is the role of the Boclé in the annual cycle of
transatlantic dust?

Is there possibly a causal connection between dust emissions

from the Bodtlé and dust loading over the Atlantic? To that

end, we calculated the cross-correlation between the dudfe dust to travel from the Béte over the western coast of
loading over the Boélé (using the deep blue algorithm, Hsu Afripa and as far as the middle of.the Atlantic Oce.an (Ben-
et al., 2004) with the Atlantic one. Indeed, Fig. 7a reveals aAMi et al., 2010). Figure 7b and c is for the same signals but
coherent correlation signal driven by the annual cycle and aVith the low-pass seasonal cycle removed.

clear spike of much higher correlation on~8-5 days lag. To further investigate which part of the year contributes
This is in complete agreement with the average time it takedo the observed correlation, we did the following analysis: a

Atmos. Chem. Phys., 12, 110, 2012 www.atmos-chem-phys.net/12/1/2012/
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Fig. 8. Three months running correlation analysis between the Time

Bodélé dust loading and the Atlantic AOD signal (green). The cor-
responding low pass dust loading over the Atlantic is shown in blue.Fig. 9. Schematic illustration of the tri-beat rhythm of the dust load-
ing (in blue) and routes (in red) over the Atlantic.

subset of 3 months was extracted from the AOD of dust time
series of each of the 10yr. The same duration was extractegeak around mid July. In contrast to the stationary route pat-
for both the Boélé and the Atlantic data for which a corre- (a1 of the SRP, the NRP is characterized by a steady migra-
lation was calculated for a range of time lags. The maximumyiq, northward of more than 1500 km in the dust route, be-
correlation apd the relevant t|m(=T I.ag were kept. Next, ”_‘etween the beginning of the period and its peak. The NRP
same analysis was repeated shifting the 3 month samplingnqs with a short southward movement of the route from
range by one day. Such analysis (defined here as running during the peak of the seasond4° N near its end.
correlation) identifies the parts of the year that contribute the During the clean periodhe average dust loading reduces
most to the significant synchronicity with the 3to 5 days Iagsabruptly to levels of less than 0.1, 2 to 3 times less than the
delr:nonstrgter(]j abo;/he-tth lation functi o ¢ typical loading during the dusty periods. At that time, the
Igure & shows that the correfation Iunction maximizes to, 4, o system continues, rests to the southern route of around

a _value:l' of rrore t??n Olt:?\ anc(i) 2‘3 dl_Jrln?hthe SEPfatr;]d E'F?I';Iatitude 4 N. This period lasts about 5-6 weeks. Figure 9
m;]zes tr? V‘Z uets orless Ian t'. ur_lngt N pea:h 0 de Th lllustrates schematically the triple beat of the dust loading
¥ivm?enlageforursun?\?#écfsrrg;?ii)onn a?g;zizsisnggtv\\:\éaern 53; an d%nd the chain saw pattern of dust transport routes over the
., ocean, the “transatlantic dust weather”.
5 days for the SRP and 6 to 8 days for the NRP but with ’
Y 4 To what extent is this triple beat rhythm linked to the

much larger variance. -

g rhythm of emission of the dust sources? Roughly, dust
emission can be regarded as a convolution of the source
properties and meteorological conditions: source properties

We showed that dust transport over the Atlantic has an ansuch as mineral content, particle size distribution, vegetation
nual triple rhythm composed of two dusty periods followed COVer, 'Fopography and location will determine _the potential
by a short but distinct clean period. The two dust periodsfor available dust. Meteorology governs the triggering of a
last about 4 and 6.5 months and are different not only in theifd\Ven source by determining the key environmental factors

route location but also in the patterns by which dust is transfor dust emission, such as surface winds, humidity and trans-
ported over the ocean. port winds. The combination will determine how likely this

The Southern-route period (SR&rts around the end of is to be translated into suspended dust flux in the atmosphere.

November and ends around the end of March. Itis character- As a rough approximation, the location of the ITCZ can
ized by low levels of background and high variance in dustbe a good indicator of the dust meteorology. As stated in
loading, with coherent and strong events of dust emissiorfhe introduction, the synoptic systems that are related to dust
that modify the oceanic dust loading for periods as long asemission over North Africa are all moving with the ITCZ
two weeks. The transport route is almost stationary arounddnd the ITF. Unlike the NRP that closely follows these sys-
latitude £ N, all along the period. tems, the SRP stays stationary over latitutlBl4This can be

The northern-route period (NRR different in all aspects.  vViewed as a result of the dust sources spatial distribution and
It starts around end of March and ends around mid Octobertheir properties.
when Atlantic dust approaches to a minimum loading of less North of the Sahel, all along the western part of the Sahara,
than 0.1 rather fast. Unlike during the SRP, changes in thehere are clusters of many dust sources (Formenti etal., 2011,
oceanic dust loading are less episodic. There is a graduand the reference therein). Some of these are quite localized
increase in the background dust loading values, reaching itbut distributed throughout the Western Sahara. The southern

4 Discussion
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